
Code Generation via Meta-programming
in Dependently Typed Proof Assistants

Mathis Bouverot-Dupuis (ENS Paris, Inria Paris) & Yannick Forster (Inria Paris)

September 2024 - Februrary 2025

Online pre-print

https://hal.science/hal-05024207v3

1/25

https://hal.science/hal-05024207v3

Meta-programming

Proof assistants provide powerful automation:
- Tactics: build proofs interactively.
- Macros: implement custom notations/EDSLs.
- Boilerplate generation: mechanically generate functions/lemmas.

Common archetype: generate terms (functions) based on an inductive.

Inductive option A :=
| Some : A -> option A
| None : option A.

2/25

Surveying meta-programming frameworks

Problem: no consensus on how to do meta-programming.
- Many different frameworks (Rocq has 4!)
- Users don’t know the pros/cons of each framework.
- How dometa-programming frameworks compare?

Survey of meta-programming in Rocq (OCaml plugins, MetaRocq, Ltac2, Elpi), Agda,
and Lean.

Case study: deriving instances for a Functor typeclass.

3/25

Our case study

Class Functor (F : Type -> Type) : Type :=
{ map A B : (A -> B) -> F A -> F B }.

Inductive option A :=
| Some : A -> option A
| None : option A.

Definition map_option {A B} f x :=
match x with
| Some a => Some (f a)
| None => None
end.

One implementation in eachmeta-programming framework.

4/25

Pros and cons of each
framework

OCaml - Pros

1. Interface directly with Rocq’s implementation.
- Define new commands/tactics.
- Access to all elaborator features: unification, typeclass resolution, …
- Andmore: extend the parser, modify persistent state, …

2. OCaml is a battle-tested programming language.
- Many good libraries (including stdlib).
- Performant.
- High quality tools (LSP, package manager, …)

3. ... and that’s it.

6/25

OCaml - Cons

1. Low-level API to build terms.

mkApp : constr -> constr array -> constr

mkCase : case_info * univ_instance * constr array * case_return *
case_invert * constr * case_branch array -> constr

All low-level details have to be given:
- implicit arguments
- universe instances
- relevance of binders
- dependent pattern matching info

7/25

OCaml - Cons

2. De Bruijn indices.

mkRel : int -> constr

E.g. in the Rocq term

fun A B (f : A -> B) (x : A) => Some (f x)

The body Some (f x) is built as

mkApp tSome [| tRel 3 ; mkApp (mkRel 2) [| mkRel 1 |] |]

De Bruijn indices are very error prone.

8/25

MetaRocq - Pros

1. Meta-programs are Rocq programs.

Inductive term :=
| tRel : nat -> term
| tApp : term -> list term -> term
| ...

Bindings to the kernel/elaborator are exposed through amonad:

tmEval : reductionStrategy -> term -> TemplateMonad term
tmMkDefinition : constant_entry -> TemplateMonad unit

9/25

MetaRocq - Pros

2. Basic term quotations i.e. a high-level API to build terms.

tmQuote {A} : A -> TemplateMonad term
tmUnquote : term -> TemplateMonad (A : Type, a : A)

3. Formal verification (in theory…).

typing : context → term → term → Type
red : context → term → term → Type

No specification for the TemplateMonad operations!

10/25

MetaRocq - Cons

1. De Bruijn indices (same as in OCaml).

2. Term quotations are too basic.
- Can’t quote terms with free variables.
- No quasi-quotations (alternate quote and unquote).

3. Programming in Rocq can be difficult.
- No input/output (e.g. printing).
- Functions need to terminate.
- Working with exceptions is difficult.
- No goodmonad library.

11/25

Agda - Pros

Agda’s Reflection API is very similar to MetaRocq.

1. Meta-programs are Agda programs.
Bindings to the kernel/elaborator are exposed through amonad (similar to
MetaRocq):

inferType : Term -> TC Term
defineFun : Name → List Clause → TC T

2. Basic term quotations.

quoteTC : forall {A} -> A -> TC Term
unquoteTC : forall {A} → Term → TC A

3. Agda handles the prover state.
- The prover state is managed by the TCmonad (contrary to MetaRocq).
- Agda has a goodmonad library (exceptions, I/O, …).

12/25

Agda - Cons

1. De Bruijn indices.

2. Term representation is constrained.
- Terms are beta-normal by construction.
- No let-bindings or local definitions.

13/25

Ltac2 - Pros

1. Tactics provide a high-level API to build terms.

Definition map_option : forall A B, (A -> B) -> option A -> option B.
intros A B f x. destruct x.
- (* Some *) intros y. constructor 0. exact (f y).
- (* None *) constructor 1.

Defined.

2. Ltac2 manages the prover state, which can be queried/modified imperatively:
- global environment
- local context
- unification state

No need to perform bookkeeping manually or work in a monad.

3. Basic term quotations.

14/25

Ltac2 - Cons

1. Tactics are difficult to reason about.
Tactics work on an implicit goal. For instance the function:

Ltac2 build_map (I : inductive) : unit :=
intros A B f x ; destruct x ...

expects a goal of the form forall A B, (A -> B) -> I A -> I B.

2. Weak low-level term manipulation API.
- De Bruijn indices.
- Many standard functions are missing.

3. Crucial meta-programming features are missing.
- Can’t declare new constants or new commands.

15/25

Elpi - Pros

1. Higher-order abstract syntax (HOAS).
Elpi does not use de Bruijn indices: binders instead re-use Elpi functions.

type fun name -> term -> (term -> term) -> term.

2. Powerful term quotations.
Elpi has quotations {{ ... }} and anti-quotations lp:(...), e.g.

pred build-map i:inductive, o:term.
build-map I

{{ fun (A B : Type) (f : A -> B) (x : lp:(FI A)) => lp:(M A B f x) }}
:- ...

3. Elpi manages the prover state (same as Ltac2).

16/25

Elpi - Cons

1. Logic programming (paradigm shift).
Steep learning curve and standard tricks can be unintuitive.

2. Unintuitive/missing language features.
- Implicit backtracking.
- Type-checker is very permissive (e.g. no closed sums).
- Lack of representation for structured data (e.g. records).

pred build-branch i:inductive, i:term, i:term, i:term, i:term,
i:term, i:list term, i:list term, o:term.

17/25

Lean - Pros

1. Lean’s elaborator is bootstrapped
- Meta-programs are simply Lean programs.
- Meta-programs have access to the complete Lean implementation.

2. Locally nameless binder representation.
- Bound variables use de Bruijn indices.
- Free variables use names.

For instance to build the term fun A B (f : A -> B) (x : I A) => f x

-- Declare the bound variables.
withLocalDecl `A _ (.sort _) fun A => do
withLocalDecl `B _ (.sort _) fun B => do
withLocalDecl `f _ (← mkArrow A B) fun f => do
withLocalDecl `x _ (← apply_ind ind A) fun x => do
-- Bind the input parameters.
mkLambdaFVars #[A, B, f, x] (.app f x)

18/25

Lean - Pros

3. Powerful term quotations.

4. Effect handling using monads.
- Excellent support for monads at the language level (notations, …).
- Meta-programs use monads, notablyMetaM:

reduce : Expr -> MetaM Expr
isDefEq : Expr -> Expr -> MetaM Expr

19/25

Lean - Cons

1. Building pattern matching/fixpoints is very difficult.

- Fixpoints are elaborated to recursors.
- Recursors for nested inductives are very complex.
- Our Lean implementation does not support recursive inductives e.g. lists.

20/25

Insights

Recurring issues

OCaml MetaRocq Agda Ltac2 Elpi Lean

De Bruijn indices

Restricted term AST

No quasi-quotations

Meta-programming ̸= ITP language

Incomplete meta-programming API

Explicit prover state handling

Lack of learning resources

Lack of documentation

Can’t verify meta-programs

22/25

Ideal meta-programming features

Choice of term AST is important, especially binder representation:
- (unscoped) de Bruijn indices are difficult to use.
- HOAS and locally nameless.

Term quotations (and anti-quotations).

Effect handling:
- generic effects (printings, non-termination, exceptions)
- domain-specific effects (manipulating the prover state)

Verification of meta-programs: not for users (the output of meta-programs can be
checked a posteriori) but for developers of meta-programs.

23/25

Future work

Extend this study to other proof assistants/languages (Idris, HOL, Beluga, …) or
meta-programs.

Develop a meta-programming framework based on our insights, most likely by
extending MetaRocq.

Use dedicated program logics to verify effectful meta-programs, and in particular
separation logic to handle the evar map.

24/25

Code is on github

https://github.com/MathisBD/metaprogramming-survey-code
25/25

https://github.com/MathisBD/metaprogramming-survey-code

