Code Generation via Meta-programming
in Dependently Typed Proof Assistants

(ENS Paris, Inria Paris) & Yannick Forster (Inria Paris)

September 2024 - Februrary 2025

Online pre-print

open science

(3
\\\\ HAL https://hal.science/hal-05024207v3

Code Generation via Meta-programming in Dependently Typed Proof Assistants
Mathis Bouverot-Dupuis (1, 2), Yannick Farster (2)

ﬂ 1 ENS-PSL - Ecole normale supérieure - Pans
2 CAMBIUM - Langages de p

de types, , preuve de pr

Abstract ﬂ Domains

Dependently typed proof assistants offer powerful meta-programming features, which Computer Science [cs]
users can take advantage of to implement proof automation or compile-time code

generation. This paper surveys meta-programming frameworks in Rocq, Agda, and Lean,

with seven implementations of a running example: deriving instances for the Functor type

class. This example is fairly simple, but sufficiently realistic to highlight recurring difficulties
with met. ing: conceptual limi of fi ke su:h as term representation
Y 9 P P Complete list of metadata
-and in particular binder rep: . p ess, and verifiability
as well as current limitations such as API Eomp\eleness learning curve, and prover state

management, which could in principle be remedied. We conclude with insights regarding
features an ideal meta-programming framework should provide.

https://hal.science/hal-05024207v3

Meta-programming

Proof assistants provide powerful automation:

- Tactics: build proofs interactively.
- Macros: implement custom notations/EDSLs.
- Boilerplate generation: mechanically generate functions/lemmas.

Common archetype: generate terms (functions) based on an inductive.

Induction principle
Inductive option A :=
| Some : A -> option A
| None : option A.

el Meta-program Boolean equality
Printing functions

Surveying meta-programming frameworks

Problem: no consensus on how to do meta-programming.

- Many different frameworks (Rocq has 4!)
- Users don’t know the pros/cons of each framework.
- How do meta-programming frameworks compare?

Survey of meta-programming in Rocqg (OCaml plugins, MetaRocq, Ltac?2, Elpi), Agda,
and Lean.

Case study: deriving instances for a Functor typeclass.

Our case study

Class Functor (F : Type —-> Type) : Type
{map AB : (A ->B) -> F A ->FB }.

Inductive option A Definition map_option {A B} f x :=
i 1= .
match x with
: A —> i A
: 2222 C o tioipzlon | Some a => Some (f a)
PP) | None => None
end.

One implementation in each meta-programming framework.

Pros and cons of each
framework

OCaml - Pros

1. Interface directly with Rocqg’s implementation.
- Define new commands/tactics.

- Access to all elaborator features: unification, typeclass resolution, ...

- And more: extend the parser, modify persistent state, ...

2. OCamlis a battle-tested programming language.

- Many good libraries (including stdlib).
- Performant.
- High quality tools (LSP, package manager, ...)

3. ... and that’s it.

OCaml - Cons

1. Low-level API to build terms.

mkApp : constr —> constr array —> constr

mkCase : case_info * univ_instance * constr array * case_return *
case_invert * constr * case_branch array -> constr

All low-level details have to be given:
- implicit arguments
- universe instances
- relevance of binders
- dependent pattern matching info

OCaml - Cons

2. De Bruijn indices.

r

mkRel : int -> constr

E.g. inthe Rocqg term

r

fun A B (f : A => B) (x : A) => Some (f x)

The body some (£ x) is built as

mkApp tSome [| tRel 3 ; mkApp (mkRel 2) [| mkRel 1 |] |]

De Bruijn indices are very error prone.

MetaRocq - Pros

1. Meta-programs are Rocq programs.

Inductive term :=

| tRel : nat -> term
| tApp : term -> list term -> term

Bindings to the kernel/elaborator are exposed through a monad:

r

tmEval : reductionStrategy -> term —-> TemplateMonad term
tmMkDefinition : constant_entry —-> TemplateMonad unit

MetaRocq - Pros

2. Basic term quotations i.e. a high-level API to build terms.

tmQuote {A} : A -> TemplateMonad term
tmUngquote : term —-> TemplateMonad (A : Type, a : A)

3. Formal verification (in theory...).

typing : context 9 term 2 term » Type
red : context 2 term 3 term » Type

No specification for the TemplateMonad operations!

MetaRocq - Cons

1. De Bruijn indices (same as in OCaml).

2. Term quotations are too basic.

- Can't quote terms with free variables.
- No quasi-quotations (alternate quote and unquote).

3. Programming in Rocq can be difficult.
- Noinput/output (e.g. printing).
- Functions need to terminate.
- Working with exceptions is difficult.
- No good monad library.

Agda - Pros

Agda’s Reflection APl is very similar to MetaRocg.

1. Meta-programs are Agda programs.
Bindings to the kernel/elaborator are exposed through a monad (similar to
MetaRocq):

inferType : Term —-> TC Term
defineFun : Name » List Clause » TC T

2. Basic term quotations.

quoteTC : forall {A} -> A -> TC Term
unquoteTC : forall {A} 3 Term 3 TC A

3. Agda handles the prover state.

- The prover state is managed by the TC monad (contrary to MetaRocq).
- Agda has a good monad library (exceptions, I/0, ...).

Agda - Cons

1. De Bruijn indices.

2. Term representation is constrained.

- Terms are beta-normal by construction.
- No let-bindings or local definitions.

Ltac?2 - Pros

1. Tactics provide a high-level API to build terms.

Definition map_option : forall A B, (A -> B) -> option A —-> option B.
intros A B f x. destruct x.
- (* Some *) intros y. constructor 0. exact (f y).
- (* None *) constructor 1.

Defined.

2. Ltac2 manages the prover state, which can be queried/modified imperatively:

- global environment
- local context
- unification state

No need to perform bookkeeping manually or work in a monad.

3. Basic term quotations.

Ltac2 - Cons

1. Tactics are difficult to reason about.
Tactics work on an implicit goal. For instance the function:

Ltac2 build_map (I : inductive) : unit :=
intros A B f x ; destruct x ...

expects a goal of the form forall a B, (A -> B) -> T A -> I B.

2. Weak low-level term manipulation API.

- De Bruijnindices.
- Many standard functions are missing.

3. Crucial meta-programming features are missing.
- Can’'t declare new constants or new commands.

Elpi - Pros

1. Higher-order abstract syntax (HOAS).
Elpi does not use de Bruijn indices: binders instead re-use Elpi functions.

[type fun name -> term -> (term -> term) -> term.

2. Powerful term quotations.
Elpi has quotations ({ ... }} and anti-quotations 1p: (...), €.&.

pred build-map i:inductive, o:term.
build-map I
{{ fun (A B : Type) (f : A => B) (x : lp:(FI A)) => 1lp:(M A B f x) }}

3. Elpi manages the prover state (same as Ltac?).

Elpi - Cons

1. Logic programming (paradigm shift).
Steep learning curve and standard tricks can be unintuitive.

2. Unintuitive/missing language features.
- Implicit backtracking.
- Type-checker is very permissive (e.g. no closed sums).
- Lack of representation for structured data (e.g. records).

pred build-branch i:inductive, i:term, i:term, i:term, i:term,
i:term, i:list term, i:list term, o:term.

Lean - Pros

1. Lean’s elaborator is bootstrapped

- Meta-programs are simply Lean programs.
- Meta-programs have access to the complete Lean implementation.

2. Locally nameless binder representation.

- Bound variables use de Bruijn indices.
- Freevariables use names.

Forinstanceto buildthetermfun 2 B (f : A —> B) (x : I A) => f x

—— Declare the bound variables.

withLocalDecl A _ (.sort _) fun A => do
withLocalDecl "B _ (.sort _) fun B => do
withLocalDecl "f _ (¢ mkArrow A B) fun f => do
withLocalDecl "x _ (¢ apply_ind ind A) fun x => do

—— Bind the input parameters.
mkLambdaFvars #[A, B, f, x] (.app f x)

Lean - Pros

3. Powerful term quotations.

4. Effect handling using monads.

- Excellent support for monads at the language level (notations, ...).
- Meta-programs use monads, notably MetaM:

reduce : Expr -> MetaM Expr
isDefEq : Expr —-> Expr —-> MetaM Expr

Lean - Cons

1. Building pattern matching/fixpoints is very difficult.

- Fixpoints are elaborated to recursors.
- Recursors for nested inductives are very complex.
- Our Lean implementation does not support recursive inductives e.g. lists.

Insights

Recurring issues

OCaml MetaRocq Agda Ltac? Elpi Lean
De Bruijn indices X X X X
Restricted term AST X X
No quasi-quotations X X X
Meta-programming # ITP language X X X
Incomplete meta-programming API X X X X
Explicit prover state handling X X
Lack of learning resources X X X
Lack of documentation X X X X X X
X X X X X X

Can't verify meta-programs

Ideal meta-programming features

Choice of term AST is important, especially binder representation:

- (unscoped) de Bruijn indices are difficult to use.
- HOAS and locally nameless.

Term quotations (and anti-quotations).
Effect handling:
- generic effects (printings, non-termination, exceptions)

- domain-specific effects (manipulating the prover state)

Verification of meta-programs: not for users (the output of meta-programs can be
checked a posteriori) but for developers of meta-programs.

Future work

Extend this study to other proof assistants/languages (Idris, HOL, Beluga, ...) or

meta-programs.

Develop a meta-programming framework based on our insights, most likely by
extending MetaRocq.

Use dedicated program logics to verify effectful meta-programs, and in particular
separation logic to handle the evar map.

Code is on github

@

=
=
=
=
=
=
=
0
0
]

MathisBD add license
Agda

Elpi

Lean

Ltac2

MetaRocq
OCaml_de_Bruijn
OCaml_locally_nameless
BUILDING.md

LICENSE

README.md

cleanup
cleanup
cleanup
cleanup
cleanup
cleanup
cleanup

cleanup

'@ 61 Commits
2 months ago
2 months ago
2 months ago
2 months ago
2 months ago
2 months ago
2 months ago

2 months ago

https://github.com/MathisBD/metaprogramming—-survey-code

https://github.com/MathisBD/metaprogramming-survey-code

