a Reflective Tactic for
Substitution Generation

Théo Winterhalter
Kathrin Stark Kenji Maillard

Formalizing binders is difficult

POPLMark challenge ®: binders are key when formalizing programming languages.

t,ui=x variable
| tu application
| Ax. t abstraction

Summary of bindings techniques used in POPLMark solutions: 2
Binder representation Proposed solutions
De Bruijn
HOAS
Weak HOAS
Hybrid
Locally Nameless
Named Variables
Nested Abstract Syntax
Nominal

NP, R, WRFRERFEDNW

1"Mechanized metatheory for the masses: the PoplMark challenge" (Aydemir et al)
2Taken from the POPLMark website https://www.seas.upenn.edu/ plclub/poplmark/

Autosubst

Many research projects try to automate dealing with binders in proof assistants. One of
the most successful is Autosubst 2. 3 4

Many implementations: in Ltac, Haskell, MetaRocq, and OCaml. The most widely used

is the OCaml version 2.

Autosubst is used in many formalizations.

3" Autosubst: Reasoning with de Bruijn Terms and Parallel Substitutions" (Schafer, Tebbi, Smolka)

41" Autosubst 2: Reasoning with Multi-sorted de Bruijn Terms and Vector Substitutions" (Stark, Schéfer,
Kaiser)

Shttps://github.com/uds-psl/autosubst-ocaml

https://github.com/uds-psl/autosubst-ocaml

Autosubst 2 in action

System F example:

ty
tm

arr

app :
tapp :
lam :

tlam :

Type

. Type

Cty >ty -> ty
all :

(bind ty in ty) -> ty

tm -> tm -> tm

tm -> ty -> tm
ty -> (bind tm in tm) -> tm
(bind ty in tm) -> tm

Autosubst will:

1.

Generate a term inductive, using de Bruijn
indices.

. Generate the substitution function:

Definition substitute : (nat -> tm) -> tm -> tm.
Prove basic lemmas about substitution.

Provide a tactic asimpl which simplifies ex-
pressions using substitution lemmas:

Lemma technical_lemma t1 t2 s :
tilsup s][t2[s] . sid] = t1[t2 . sid][s].
Proof. asimpl. reflexivity. Qed.

asimpl is too slow

On Théo Winterhalter's ghost-reflection development asimpl takes more than 3/4 of
total type-checking time!

Ltac asimpl :=
repeat (first
[progress setoid_rewrite substSubst_term_pointwise
| progress setoid_rewrite substSubst_term
| progress setoid_rewrite substRen_term_pointwise

...

The full power of setoid_rewrite is needed because of pointwise equality:

Lemma scomp_assoc (sl s2 s3 : nat -> tm) :
sl >> (82 >> 83) =1 (sl >> s2) >> s3.

Sulfur = Autosubst + efficient asimpl

Shttps://github.com/TheoWinterhalter/ghost-reflection

Sulfur: using reflection

A reflective asimpl tactic

How to gain performance? Write asimpl as a reflective tactic.
Example: solving the equation ti[sup s][t2[s] . sid] = t1[t2 . sid] [s]

Using asimpl on the right hand side:

t1[t2 . sid] [s]

reify

Tsubst ?s (Tsubst (Scons 7t2 Sid) 7t1)
simplify

Tsubst (Scons (Tsubst 7s 7t2) 7s) 7t1

evaluate

t1[t2[s] . s]

Concrete & explicit syntax

Concrete syntax Explicit syntax
Inductive tm := Inductive term :=
| var (idx : nat) | Tvar (idx : nat)
| app (t u : tm) | Tctor (c : ctor) (args : list term)
[lam (T : ty) (t : tm). | Tsubst (s : subst) (t : term)
| Tmvar (m : mvar)
Definition subst := nat -> tm. [
with subst :=
Definition substitute : | sid
subst -> tm -> tm. | Sshift
| Scomp (s1 s2 : subst)
Definition scomp : | Smvar (s : mvar)

subst -> subst -> subst. [

Explicit syntax corresponds to the sigma calculus 7:
- Metavariables Tmvar/Smvar represent concrete terms/substitutions which can't be
described by the sigma calculus.
- Explicit renamings and explicit naturals are also needed (not shown).

""Explicit Substitutions" (Abadi, Cardelli, Curien, Lévy)

Concrete & explicit syntax

Concrete syntax is different for each language (STLC, system F, etc) and generated by
Sulfur using OCaml.

Explicit syntax is parameterized by a signature and defined once and for all:
Inductive term (sig : signature) :=
| Tvar (idx : nat)

| Tctor (c : ctor sig) (args : list (term sig))
| Tsubst (s : subst sig) (t : term sig)
([

A signature contains:

1. The set of constructors, e.g. {app, lam}.
2. For each constructor:
- The arity (number of arguments).
- Which arguments contain a binder (e.g. the body in lam).

asimpl: more details

Input: a term t.oncrete
- /)
Output: a term t] . ere and a proof of teoncrete = opcrote

t.
concrete (* concrete -> explicit *)
reify 0Caml reify : constr -> constr.
texplicit (* explicit -> concrete *)
Definition eval : env -> term -> tm.
simplify
4 (* explitcit -> explicit *)
explicit Definition simplify : term -> term.
evaluate Lemma soundness t e :
¢ eval e t = eval e (simplify t).
concrete

Proved correct once and for all: much more efficient. No need to build (and
type-check) a large proof each time asimpl is called.

Implemented in Rocq (mostly): much easier to extend, e.g. implement alternate
simplification strategies.

Future Work

Benchmarking

e No benchmarks yet, performance seems noticeably faster compared to Autosubst's
asimpl (probably at least 10x).

e Many basic optimizations to implement:
e We still use cbv & cbn instead of vm_compute.
e The simplification function (written in Rocq) is very naive.
e \We need to traverse terms several times because of limitations of rewrite_strat.

Scaling to more complex languages

Multiple sorts (e.g. system F).

Inductive ty :=
[...

with tm :=

[...

with value :=

Lists/options in constructor arguments (e.g. n-ary applications) and in general arbitrary
functors.

Inductive tm :=

[app (t : tm) (ts : list tm)
[...

Proving completeness

A completeness theorem holds in simpler variants of sigma calculus: &

Theorem completeness t t'
(forall e, eval e t = eval e t') ->
simpl_term t = simpl_term t'

Intuitively, reification and simplification is enough to decide equality of concrete terms.
Full completeness does not hold in our case. Possible future work:

1. Prove a weaker form of completeness.
2. Perform more aggressive simplifications to recover full completeness.

8" Completeness and Decidability of de Bruijn Substitution Algebra in Coq" (Schifer, Smolka, Tebbi)

Recap

1. Sulfur, a tool to help dealing with de Bruijn indices and parallel substitutions.
2. Simplification is efficient and easy to extend.

3. Handling multiple sorts is challenging (future work).

Code is on github

https://github.com/MathisBD/rocq-sulfur

https://github.com/MathisBD/rocq-sulfur

