
Sulfur: a Reflective Tactic for
Substitution Generation

Mathis Bouverot-Dupuis Théo Winterhalter
Kathrin Stark Kenji Maillard

Formalizing binders is difficult

POPLMark challenge 1: binders are key when formalizing programming languages.

t, u ::= x variable

| t u application

| λx. t abstraction

Summary of bindings techniques used in POPLMark solutions: 2

Binder representation Proposed solutions
De Bruijn 3

HOAS 2
Weak HOAS 1

Hybrid 1
Locally Nameless 3
Named Variables 1

Nested Abstract Syntax 1
Nominal 2

1"Mechanized metatheory for the masses: the PoplMark challenge" (Aydemir et al)
2Taken from the POPLMark website https://www.seas.upenn.edu/ plclub/poplmark/

1/15

Autosubst

Many research projects try to automate dealing with binders in proof assistants. One of
the most successful is Autosubst 2. 3 4

Many implementations: in Ltac, Haskell, MetaRocq, and OCaml. The most widely used
is the OCaml version 5.

Autosubst is used in many formalizations.

3"Autosubst: Reasoning with de Bruijn Terms and Parallel Substitutions" (Schäfer, Tebbi, Smolka)
4"Autosubst 2: Reasoning with Multi-sorted de Bruijn Terms and Vector Substitutions" (Stark, Schäfer,

Kaiser)
5https://github.com/uds-psl/autosubst-ocaml

2/15

https://github.com/uds-psl/autosubst-ocaml

Autosubst 2 in action

System F example:

ty : Type
tm : Type

arr : ty -> ty -> ty
all : (bind ty in ty) -> ty

app : tm -> tm -> tm
tapp : tm -> ty -> tm
lam : ty -> (bind tm in tm) -> tm
tlam : (bind ty in tm) -> tm

Autosubst will:

1. Generate a term inductive, using de Bruijn
indices.

2. Generate the substitution function:
Definition substitute : (nat -> tm) -> tm -> tm.

3. Prove basic lemmas about substitution.

4. Provide a tactic asimpl which simplifies ex-
pressions using substitution lemmas:
Lemma technical_lemma t1 t2 s :

t1[sup s][t2[s] . sid] = t1[t2 . sid][s].
Proof. asimpl. reflexivity. Qed.

3/15

asimpl is too slow

On Théo Winterhalter’s ghost-reflection 6 development asimpl takes more than 3/4 of
total type-checking time!

Ltac asimpl :=
repeat (first

[progress setoid_rewrite substSubst_term_pointwise
| progress setoid_rewrite substSubst_term
| progress setoid_rewrite substRen_term_pointwise
| ...]).

The full power of setoid_rewrite is needed because of pointwise equality:
Lemma scomp_assoc (s1 s2 s3 : nat -> tm) :

s1 >> (s2 >> s3) =1 (s1 >> s2) >> s3.

Sulfur = Autosubst + efficient asimpl

6https://github.com/TheoWinterhalter/ghost-reflection
4/15

Sulfur: using reflection

A reflective asimpl tactic

How to gain performance? Write asimpl as a reflective tactic.

Example: solving the equation t1[sup s][t2[s] . sid] = t1[t2 . sid][s]

Using asimpl on the right hand side:

t1[t2 . sid][s]

Tsubst ?s (Tsubst (Scons ?t2 Sid) ?t1)

Tsubst (Scons (Tsubst ?s ?t2) ?s) ?t1

t1[t2[s] . s]

reif y

simplif y

evaluate

6/15

Concrete & explicit syntax

Concrete syntax

Inductive tm :=
| var (idx : nat)
| app (t u : tm)
| lam (T : ty) (t : tm).

Definition subst := nat -> tm.

Definition substitute :
subst -> tm -> tm.

Definition scomp :
subst -> subst -> subst.

Explicit syntax

Inductive term :=
| Tvar (idx : nat)
| Tctor (c : ctor) (args : list term)
| Tsubst (s : subst) (t : term)
| Tmvar (m : mvar)
| ...
with subst :=
| Sid
| Sshift
| Scomp (s1 s2 : subst)
| Smvar (s : mvar)
| ...

Explicit syntax corresponds to the sigma calculus 7:
- Metavariables Tmvar/Smvar represent concrete terms/substitutions which can’t be

described by the sigma calculus.
- Explicit renamings and explicit naturals are also needed (not shown).

7"Explicit Substitutions" (Abadi, Cardelli, Curien, Lévy)
7/15

Concrete & explicit syntax

Concrete syntax is different for each language (STLC, system F, etc) and generated by
Sulfur using OCaml.

Explicit syntax is parameterized by a signature and defined once and for all:
Inductive term (sig : signature) :=
| Tvar (idx : nat)
| Tctor (c : ctor sig) (args : list (term sig))
| Tsubst (s : subst sig) (t : term sig)
| ...

A signature contains:
1. The set of constructors, e.g. {app, lam}.
2. For each constructor:

- The arity (number of arguments).
- Which arguments contain a binder (e.g. the body in lam).

8/15

asimpl: more details

Input: a term tconcrete
Output: a term t ′concrete and a proof of tconcrete = t ′concrete

tconcrete

texplicit

t ′explicit

t ′concrete

reif y

simplif y

evaluate

(* concrete -> explicit *)
OCaml reify : constr -> constr.

(* explicit -> concrete *)
Definition eval : env -> term -> tm.

(* explitcit -> explicit *)
Definition simplify : term -> term.

Lemma soundness t e :
eval e t = eval e (simplify t).

Proved correct once and for all: much more efficient. No need to build (and
type-check) a large proof each time asimpl is called.

Implemented in Rocq (mostly): much easier to extend, e.g. implement alternate
simplification strategies.

9/15

Future Work

Benchmarking

• No benchmarks yet, performance seems noticeably faster compared to Autosubst’s
asimpl (probably at least 10x).

• Many basic optimizations to implement:
• We still use cbv & cbn instead of vm_compute.
• The simplification function (written in Rocq) is very naive.
• We need to traverse terms several times because of limitations of rewrite_strat.

11/15

Scaling to more complex languages

Multiple sorts (e.g. system F).

Inductive ty :=
| ...
with tm :=
| ...
with value :=
| ...

Lists/options in constructor arguments (e.g. n-ary applications) and in general arbitrary
functors.

Inductive tm :=
| app (t : tm) (ts : list tm)
| ...

12/15

Proving completeness

A completeness theorem holds in simpler variants of sigma calculus: 8

Theorem completeness t t' :
(forall e, eval e t = eval e t') ->
simpl_term t = simpl_term t'

Intuitively, reification and simplification is enough to decide equality of concrete terms.

Full completeness does not hold in our case. Possible future work:
1. Prove a weaker form of completeness.
2. Perform more aggressive simplifications to recover full completeness.

8"Completeness and Decidability of de Bruijn Substitution Algebra in Coq" (Schäfer, Smolka, Tebbi)
13/15

Recap

1. Sulfur, a tool to help dealing with de Bruijn indices and parallel substitutions.

2. Simplification is efficient and easy to extend.

3. Handling multiple sorts is challenging (future work).

14/15

Code is on github

https://github.com/MathisBD/rocq-sulfur

15/15

https://github.com/MathisBD/rocq-sulfur

