Sulfur: a Reflective Tactic for
Substitution Simplification

Mathis Bouverot-Dupuis
Inria Paris, ENS Paris
Paris, France
mathis.bouverot-dupuis@inria.fr

Kathrin Stark
Heriot-Watt University
Edinburgh, United Kingdom
K.Stark@hw.ac.uk

1 Introduction

When formalizing the meta-theory of programming lan-
guages or type systems in proof assistants such as Rocq [23],
a key design decision is the choice of variable representation
(see e.g. the PoplMark challenge [4]). De Bruijn indices [7]
are a popular option because they make a-equivalence co-
incide with syntactic equality. However, de Bruijn indices
also introduce significant overhead in the form of lift and
renaming operations, which require many technical lemmas
and can make proofs tedious.

To address this, many libraries attempt to automate repet-
itive aspects of dealing with de Bruijn indices and substitu-
tion, both in programming languages (e.g. Rebound [8] or
BindLib [14]) and in proof assistants (e.g. Autosubst [19, 22],
Tealeaves [9], DBGen [16], Fiore and Szamozvancev [10],
and Allais et al. [3]). In particular, while Autosubst has been
successfully used in many formalizations [2, 6, 11, 12, 21, 24,
25], its simplification tactic asimpl suffers from significant
performance issues when used in large developments. In
this talk, we present Sulfur! (Substitution logical framework
using reflection), a Rocq plugin that attempts to solve the
performance issues of Autosubst’s asimpl tactic by imple-
menting it as a reflective tactic [5, 13, 15]. For now, Sulfur
supports single-sorted, extrinsic syntax: extensions to more
complex signatures are discussed in Section 4.

2 Using Sulfur

Sulfur provides a similar interface to Autosubst: given a user-
specified language signature (Figure 1a), Sulfur automatically
generates Rocq code (Figure 1b) implementing an inductive
type term representing terms with variables encoded as de
Bruijn indices, and a parallel substitution function.

Most importantly, Sulfur automates reasoning about sub-
stitution: like Autosubst, it provides a tactic asimpl which
simplifies terms and substitutions according to the rules of
o-calculus [1]. For instance consider the technical lemma

10ur development is available at https://github.com/MathisBD/rocq-sulfur.

Théo Winterhalter
Inria Saclay, ENS Paris-Saclay
Gif-sur-Yvette, France
theo.winterhalter@inria.fr

Kenji Maillard
Inria Rennes
Nantes, France
kenji@maillard.blue

Sulfur Generate {{
term : Type
app : term — term — term
lam : (bind term in term) — term

13-

(a) User-specified signature.
Inductive term :=
| var (i : nat)
| app (t u : term)
| lam (t : term).

Definition substitute : (nat — term) — term — term.
(x* substitute s t is abbreviated as t[s]. *)

(b) Code generated by Sulfur.
Lemma technical_lemma (t1 t2 : term) (s :
t1[0 . (s >> shift)I[t2[s] . id] = t1[t2 .

nat — term) :
id][s].

(c) Example substitution-heavy lemma.

Figure 1. Untyped A-calculus, using Sulfur. The code in Fig-
ure 1b is automatically generated by Sulfur.

in Figure 1c, which is needed when proving standard prop-
erties of A-calculus. In this lemma, id is the identity substi-
tution, shift is the substitution which adds 1 to every de
Bruijn index, t . s is a substitution which maps index o to
tand index i+1 to s i, and s1 >> s2 is the composition of s1
followed by s2. Proving this equality by hand requires sig-
nificantly more effort than one might expect, using many
auxiliary lemmas. However, asimpl simplifies both sides of
the equation to t1[t2[s] . s], trivializing the proof.

3 Key ideas

While Sulfur provides, by design, the same user interface
as Autosubst, its implementation diverges significantly. In
particular, Autosubst’s asimpl tactic relies on Rocq’s setoid
rewrite facilities [20], and has significant performance issues
when used in large developments. Sulfur aims to improve
performance by using a logical framework approach: we
define a generic notion of syntax with explicit substitutions

https://github.com/MathisBD/rocq-sulfur

within Rocq, and implement asimpl as a plain Rocq function
over this generic syntax.

Signatures. We encode the signature of a language as a
set of constructors (ctor) along with information about the
arity and binding structure of each constructor (ctor_args):

Inductive arg := Record signature := {
| arg_term ctor : Type ;
| arg_bind (x : arg). ctor_args : ctor -> list arg }.

As an example we give the signature for the untyped
lambda-calculus of Figure 1:
Inductive ctor := App | Lam.

ctor_args App = [arg_term ; arg_term]
ctor_args Lam = [(arg_bind arg_term)]

Generic syntax. Inspired by o-calculus, we define a no-
tion of syntax with explicit substitutions, which is moreover
generic, i.e. parameterized over a signature. We give a sim-
plified version of generic syntax:

Inductive g_term {s :
| g_var (i : nat)
| g_ctor (c : ctor s) (args :

signature} :=

list g_term)

| g_substitute (s : g_subst) (t : g_term)
| g_term_mvar (m : mvar)

with g_subst {s : signature} :=

| g_id

| g_shift

| g_cons (t : g_term) (s : g_subst)

| g_comp (s1 s2 : g_subst)

|

g_subst_mvar (m : mvar).

Substitutions are not arbitrary functions of type nat — g_term
but are instead built using a set of constructors gid, gshift,
gcons, and gcomp, which correspond to the substitution prim-
itives id, shift, _ . _, and _ >> _ of the o-calculus. Substitu-
tions can be explicitly applied to terms using g_substitute.

Not all substitutions nat — term are representable using
the constructors of o-calculus. Substitutions which don’t fit
in the framework of o-calculus are represented using meta-
variables (constructor g_subst_mvar). Terms can similarly con-
tain meta-variables (constructor g_term_mvar). Meta-variables
mvar are drawn from an infinite set with decidable equality
(in our development we define mvar as nat).

Generic syntax contains enough information to be able to
implement a simplification function directly in Rocq:

Definition simplify sig : g_term sig — g_term sig.

Reification and denotation. Generic syntax is quite far
from what we picture as the untyped A-calculus, and we
certainly do not want users to work with g_term. Thus, we
still generate syntax specialized to the user’s signature, as
in Figure 1b.

The mapping between user syntax and generic syntax, i.e.
between term and g_term, is fairly straightforward. A deno-
tation function denote :
plemented directly within Rocq (for any signature sig) by
simple structural recursion over the input term. The first

env — gterm sig — term can be im-

argument of denote is an environment, which is a mapping
from meta-variables to concrete terms and substitutions.

The other direction, reification, requires us to step outside
Rocq. Leveraging Rocq’s support for meta-programming,
we can reify a term t into a generic term t'
and an environment e : env, which are required to obey the
invariant that denote e t' is convertible (i.e. definitionally
equal) to t.

. g_term sig

Implementing asimpl using reflection. In order to sim-
plify terms in user syntax, we first establish the soundness
of simplify:

Theorem soundness e t : denote e t = denote e (simplify t).

Using all these ingredients, we can implement asimpl as
follows. To simplify a term t : term appearing in a goal:

1. Reify tinto t' : g_term sigande : env.

2. Because t is convertible to denote e t', which itself is
equal to denote e (simplify t'), we can replace all occur-
rences of t with denote e (simplify t') in the goal.

3. Use Rocq’s evaluation mechanisms to reduce the expres-

sion denote e (simplify t').

4 Future work

Benchmarking. Early experiments suggest that Sulfur’s
asimpl tactic is indeed faster than the equivalent Autosubst
tactic. We plan on conducting detailed benchmarks to quan-
tify the performance gain more precisely.

More complex signatures. Central future work is to ex-
tend Sulfur to accommodate more complex signatures, scal-
ing up to the full generality of Autosubst. For instance, sig-
natures with multiple sorts of terms (e.g. System F) and sig-
natures including functors (e.g. using lists to represent n-ary
applications) are not supported yet. Extending our generic
syntax to handle multiple sorts requires encoding subtle
invariants: for instance in System F, term variables cannot
occur in types and thus parallel substitution in types only
requires a substitution on type variables. We hope to benefit
from related work on multi-sorted substitution [17].

Proving completeness. The following completeness the-
orem holds in simpler variants of o-calculus [18]:

Theorem completeness (t t' : g_term sig) :
(forall e, denote e t = denote e t') —
simplify t = simplify t'

Intuitively this states that reification followed by simplifica-
tion is enough to decide equality of concrete terms. Unfor-
tunately, this completeness theorem does not hold on our
version of generic syntax due to the presence of explicit re-
namings, however we conjecture that some weaker version
of completeness still holds, and believe that proving such a
result is an interesting direction for future work.

References
[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. 1991. Explicit sub-

—
Do
—

—
w
-

—
=
fla

[10

(11

[12

[14

—

—

—

—

=

stitutions. Journal of Functional Programming 1, 4 (1991), 375-416.
https://doi.org/10.1017/S0956796800000186

Arthur Adjedj, Meven Lennon-Bertrand, Kenji Maillard, Pierre-Marie
Pédrot, and Loic Pujet. 2024. Martin-Lof a la Coq. In Proceedings of the
13th ACM SIGPLAN International Conference on Certified Programs and
Proofs (London, UK) (CPP 2024). Association for Computing Machinery,
New York, NY, USA, 230-245. https://doi.org/10.1145/3636501.3636951
Guillaume Allais, Robert Atkey, James Chapman, Conor McBride, and
James McKinna. 2018. A type and scope safe universe of syntaxes with
binding: their semantics and proofs. Proc. ACM Program. Lang. 2, ICFP,
Article 90 (July 2018), 30 pages. https://doi.org/10.1145/3236785
Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan
Foster, Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey
Washburn, Stephanie Weirich, and Steve Zdancewic. 2005. Mechanized
metatheory for the masses: the PoplMark challenge. In Proceedings of
the 18th International Conference on Theorem Proving in Higher Order
Logics (Oxford, UK) (TPHOLs’05). Springer-Verlag, Berlin, Heidelberg,
50-65. https://doi.org/10.1007/11541868_4

Samuel Boutin. 1997. Using reflection to build efficient and certified de-
cision procedures. In Theoretical Aspects of Computer Software, Martin
Abadi and Takayasu Ito (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 515-529.

Liron Cohen, Ariel Grunfeld, Dominik Kirst, and Etienne Miquey.
2025. Syntactic Effectful Realizability in Higher-Order Logic. CoRR
abs/2506.09458 (2025). https://doi.org/10.48550/ARXIV.2506.09458
arXiv:2506.09458

N.G de Bruijn. 1972. Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to the
Church-Rosser theorem. Indagationes Mathematicae (Proceedings) 75,
5(1972), 381-392. https://doi.org/10.1016/1385-7258(72)90034-0
Noé De Santo and Stephanie Weirich. 2025. Rebound: Efficient, Expres-
sive, and Well-Scoped Binding. In Proceedings of the 18th ACM SIGPLAN
International Haskell Symposium (Singapore, Singapore) (Haskell °25).
Association for Computing Machinery, New York, NY, USA, 38-52.
https://doi.org/10.1145/3759164.3759348

Lawrence Dunn, Val Tannen, and Steve Zdancewic. 2023. Tealeaves:
Structured Monads for Generic First-Order Abstract Syntax Infrastruc-
ture. In 14th International Conference on Interactive Theorem Proving
(ITP 2023) (Leibniz International Proceedings in Informatics (LIPlcs),
Vol. 268), Adam Naumowicz and René Thiemann (Eds.). Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, 14:1-
14:20. https://doi.org/10.4230/LIPlcs.ITP.2023.14

Marcelo Fiore and Dmitrij Szamozvancev. 2022. Formal metatheory
of second-order abstract syntax. Proc. ACM Program. Lang. 6, POPL,
Article 53 (Jan. 2022), 29 pages. https://doi.org/10.1145/3498715
Yannick Forster, Dominik Kirst, and Dominik Wehr. 2021.
Completeness theorems for first-order logic analysed in con-
structive type theory: Extended version. Journal of Logic and
Computation 31, 1 (01 2021), 112-151. https://doi.org/10.1093/
logcom/exaa073 arXiv:https://academic.oup.com/logcom/article-
pdf/31/1/112/36719784/exaa073.pdf

Paolo G. Giarrusso, Léo Stefanesco, Amin Timany, Lars Birkedal, and
Robbert Krebbers. 2020. Scala step-by-step: soundness for DOT with
step-indexed logical relations in Iris. Proc. ACM Program. Lang. 4, ICFP,
Article 114 (Aug. 2020), 29 pages. https://doi.org/10.1145/3408996
Benjamin Grégoire and Assia Mahboubi. 2005. Proving equalities
in a commutative ring done right in coq. In Proceedings of the 18th
International Conference on Theorem Proving in Higher Order Logics
(Oxford, UK) (TPHOLs 05). Springer-Verlag, Berlin, Heidelberg, 98-113.
https://doi.org/10.1007/11541868_7

Rodolphe Lepigre and Christophe Raffalli. 2018. Abstract represen-
tation of binders in ocaml using the bindlib library. arXiv preprint

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

arXiv:1807.01872 (2018).

Gregory Malecha, Adam Chlipala, and Thomas Braibant. 2014. Com-
positional Computational Reflection. In Interactive Theorem Proving,
Gerwin Klein and Ruben Gamboa (Eds.). Springer International Pub-
lishing, Cham, 374-389.

Emmanuel Polonowski. 2013. Automatically Generated Infrastructure
for De Bruijn Syntaxes. In Interactive Theorem Proving, Sandrine Blazy,
Christine Paulin-Mohring, and David Pichardie (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 402-417.

Hannes Saffrich. 2024. Abstractions for Multi-Sorted Substitutions. In
15th International Conference on Interactive Theorem Proving (ITP 2024)
(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 309), Yves
Bertot, Temur Kutsia, and Michael Norrish (Eds.). Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, 32:1-32:19.
https://doi.org/10.4230/LIPlcs.ITP.2024.32

Steven Schifer, Gert Smolka, and Tobias Tebbi. 2015. Completeness and
Decidability of de Bruijn Substitution Algebra in Coq. In Proceedings of
the 2015 Conference on Certified Programs and Proofs (Mumbai, India)
(CPP ’15). Association for Computing Machinery, New York, NY, USA,
67-73. https://doi.org/10.1145/2676724.2693163

Steven Schifer, Tobias Tebbi, and Gert Smolka. 2015. Autosubst: Rea-
soning with de Bruijn Terms and Parallel Substitutions. In Interac-
tive Theorem Proving - 6th International Conference, ITP 2015, Nanjing,
China, August 24-27, 2015 (LNAI), Xingyuan Zhang and Christian Ur-
ban (Eds.). Springer-Verlag.

Matthieu Sozeau. 2009. A new look at generalized rewriting in type
theory. Journal of formalized reasoning 2, 1 (2009), 41-62.

Simon Spies and Yannick Forster. 2020. Undecidability of higher-order
unification formalised in Coq. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs (New Orleans,
LA, USA) (CPP 2020). Association for Computing Machinery, New York,
NY, USA, 143-157. https://doi.org/10.1145/3372885.3373832

Kathrin Stark, Steven Schifer, and Jonas Kaiser. 2019. Autosubst
2: reasoning with multi-sorted de Bruijn terms and vector substitu-
tions. In Proceedings of the 8th ACM SIGPLAN International Conference
on Certified Programs and Proofs (Cascais, Portugal) (CPP 2019). As-
sociation for Computing Machinery, New York, NY, USA, 166-180.
https://doi.org/10.1145/3293880.3294101

The Coq Development Team. 2024. The Coq Proof Assistant. https:
//doi.org/10.5281/zenodo.14542673

Dawit Tirore, Jesper Bengtson, and Marco Carbone. 2023. A Sound and
Complete Projection for Global Types. In 14th International Conference
on Interactive Theorem Proving (ITP 2023) (Leibniz International Pro-
ceedings in Informatics (LIPIcs), Vol. 268), Adam Naumowicz and René
Thiemann (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
Dagstuhl, Germany, 28:1-28:19. https://doi.org/10.4230/LIPIcs.ITP.
2023.28

Théo Winterhalter. 2024. Dependent Ghosts Have a Reflection for Free.
Proc. ACM Program. Lang. 8, ICFP, Article 258 (Aug. 2024), 29 pages.
https://doi.org/10.1145/3674647

https://doi.org/10.1017/S0956796800000186
https://doi.org/10.1145/3636501.3636951
https://doi.org/10.1145/3236785
https://doi.org/10.1007/11541868_4
https://doi.org/10.48550/ARXIV.2506.09458
https://arxiv.org/abs/2506.09458
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1145/3759164.3759348
https://doi.org/10.4230/LIPIcs.ITP.2023.14
https://doi.org/10.1145/3498715
https://doi.org/10.1093/logcom/exaa073
https://doi.org/10.1093/logcom/exaa073
https://arxiv.org/abs/https://academic.oup.com/logcom/article-pdf/31/1/112/36719784/exaa073.pdf
https://arxiv.org/abs/https://academic.oup.com/logcom/article-pdf/31/1/112/36719784/exaa073.pdf
https://doi.org/10.1145/3408996
https://doi.org/10.1007/11541868_7
https://doi.org/10.4230/LIPIcs.ITP.2024.32
https://doi.org/10.1145/2676724.2693163
https://doi.org/10.1145/3372885.3373832
https://doi.org/10.1145/3293880.3294101
https://doi.org/10.5281/zenodo.14542673
https://doi.org/10.5281/zenodo.14542673
https://doi.org/10.4230/LIPIcs.ITP.2023.28
https://doi.org/10.4230/LIPIcs.ITP.2023.28
https://doi.org/10.1145/3674647

	1 Introduction
	2 Using Sulfur
	3 Key ideas
	4 Future work
	References

