Code Generation via Meta-programming
in Dependently Typed Proof Assistants

Mathis Bouverot-Dupuis!2, Yannick Forster!

nria Paris
2ENS Paris

Abstract. Dependently typed proof assistants offer powerful meta-pro-
gramming features, which allow users to implement proof automation
or compile-time code generation. This paper surveys meta-programming
frameworks in Rocq, Agda, and Lean, with seven implementations of a
running example: deriving instances for the Functor typeclass. This ex-
ample is fairly simple, but realistic enough to highlight recurring difficul-
ties with meta-programming: conceptual limitations of frameworks such
as term representation — and in particular binder representation —, meta-
language expressiveness, and verifiability, as well as current limitations
such as API completeness, learning curve, and prover state management,
which could in principle be remedied. We conclude with insights regard-
ing features an ideal meta-programming framework should provide.

1 Introduction

All proof assistants support user-extensible tactics and code generation through
meta-programming frameworks. Meta-programs are programs that produce or
manipulate other programs as data. They can in particular be used to gen-
erate boilerplate code, i.e. code that can be mechanically derived from defi-
nitions, thereby increasing the productivity of proof assistant users. Common
examples are induction principles [81], 48], equality deciders [81] [38], finiteness
proofs [25], countability proofs [25], or substitution functions for syntax [79].
Naturally, the default meta-programming language of a proof assistant is its
implementation language, and several proof assistants even come with multi-
ple independent meta-programming frameworks. However, we can observe that
meta-programming is not widespread on the example of boilerplate generation
tools which often fall into one of the following: Either proof assistants come with
built-in boilerplate generation support (such as induction principles or typeclass
instances) which is widely used. Or tools for generating boilerplate are developed,
but not adopted by the community [81] [38] [I5]. Lastly, many papers remark that
automatic boilerplate generation would be feasible and interesting, but do not
carry it out [85] 87, [34) [30]. Furthermore, subcommunities often seem to be split
into silos regarding frameworks and we are not aware of scientific comparative
work between different frameworks and proof assistants. The notable exception
is Dubois de Prisque’s PhD thesis [27], using several meta-programming frame-
works in Rocq, but not coming with one central example implemented in different
frameworks and focusing solely on Rocq.

An additional barrier to adoption is that most frameworks are organically
grown and documentation is not accessible to non-experts: pros and cons are
often implicitly known by developers but not readily accessible. In fact, the
situation is so chaotic that, at times, in order to generate boilerplate code authors
create ad hoc meta-programming facilities from scratch [79) 51], B0, B9] instead
of taking advantage of existing meta-programming facilities.

On the other hand, the vast choice of meta-programming frameworks also
hints that we are at a point where enough evidence is available to evaluate the
state of the art and suggest future developments. In this paper, we focus on
three major dependently typed proof assistants based on the Calculus of Induc-
tive Constructions (CIC) [21] [66]: Rocq [82], Agda [63] [64], and Lean 4 [57].
We survey their respective meta-programming frameworks: Rocq OCaml plu-
gins (§), MetaRocq |5l [76] (§ [F)), Agda’s Reflection API [86] (§[6), Lean 4’s
meta-programming API (§ [B)T] Ltac2 [72] (§[7), and Elpi [31,81] (§[9). In the ap-
pendix (§ , we furthermore explain a novel approach to use Rocq’s OCaml API
with locally nameless syntax. This means that we focus on systems which are de-
signed as proof assistants with consistent meta-theory, rather than dependently
typed programming languages, and focus on those with conceptual similarity
and shared foundations. In particular, we do not consider Idris [12, [13], HOL-
based systems such as Isabelle, HOL4, or HOL light, or LF-based systems such
as Beluga, but discuss them in § [I0]

We evaluate the different meta-programming frameworks on a simple yet
realistic example: automatically deriving instances of the Functor typeclass for
a simple family of inductives, covering, amongst many other types, options, lists,
and trees. For Rocq we e.g. want to generate the following for the list type:

Fixpoint map {A B : Type} (f : A -> B) (1 : list A) : list B :=

match 1 with [] => [] | x :: 1 =>f x :: map £ 1 end.

Our implementations support non-mutual, non-indexed, possibly nested induc-
tives with a single parameter. The only exception is the Lean implementation
which does not support recursive (and thus nested) inductives, the reasons of
which are explained in section §

Many tasks involving automatic boilerplate generation follow the same model
as this example: take an inductive as input and produce a term as output. We
choose this example because it is simple enough for code to be readable and
explainable, yet complex enough to expose issues that arise in more realistic
meta-programs, and makes use of common meta-programming features such as
typeclass search or the ability to extend the global environment.

Our evaluation criteria are split into conceptual criteria, which are inher-
ent to the approach used by the meta-programming framework, and current
criteria, which are incidental characteristics of the framework and could be
changed in the future. Conceptual criteria include the expressiveness of the meta-
language (especially access to printing, exceptions, non-termination, and muta-
ble state), term representation used (especially of binders), and verifiability of

! There is no publication on meta-programming in Lean 4 yet, just a collaborative
book draft [67]. Lean 3’s meta-programming was surveyed by Ebner et al. [32].

meta-programs. Since this is an experience report, we also comment on learning
curve: the author(s) of examples in this paper had no previous contact to most
meta-programming frameworks, excluding Ltac2 and OCaml Rocq plugins. Cur-
rent criteria include API completeness, management of the prover state (such as
the global environment or unification state), and the presence of term quotation.

‘We do not consider performance issues in this paper: most inductive to term
meta-programs run in an order of magnitude of seconds, and only have to be
run once per inductive definition. In practice, developments rarely contain many
inductive type definitions or very large inductive type definitions. Thus, we deem
performance less critical than the aspects discussed here. Performance issues are
critical when implementing proof automation (such as tactics) or more com-
plex meta-programs such as unification algorithms or type checkers (for instance
Rocq’s verified kernel in MetaRocq [77] or Lean’s kernel in LeandLean [I4]),
which are out of scope for this paper. We also do not consider actual verification
of meta-programs, as it is not achievable in most of the frameworks we consider
as of today, but still comment on verifiability when relevant.

This paper is the first evaluation of the state of the art in meta-programming
and lays the foundations for future projects regarding meta-programming. Our
perspective is of course subjective, and decidedly the perspective of someone who
is not an expert in any of the discussed frameworks, which we deem represen-
tative of average users. One of the authors is a developer of MetaRocq, and the
other author had some amount of experience with meta-programming in Lean,
Ltac2, and OCaml plugins prior to this survey.

Consequently, insights in this paper might be well-known or even folklore
for experts in the field and developers of frameworks. However, as far as we are
aware, none of these insights have ever been written down transparently, and
they are thus inaccessible for users of meta-programming frameworks.

Of all the aspects we discuss, variable binding techniques are certainly the one
which has been discussed the most densely in related work. However, these tech-
niques have mainly been discussed from the perspective of doing meta-theoretic
proofs [9, [1], and not from the perspective of meta-programming. We thus think
that our report complements these insights. We would not go as far as saying
that we have identified a meta-programming challenge akin to the POPLmark
challenge for formalisation, but our report can certainly be seen as a first step
towards such a challenge.

Contributions.

1. A comprehensive survey of the six meta-programming frameworks in Rocq,
Agda, and Lean, from the point of view of users rather than experts

2. An overview of their pros and cons.

3. A simple but realistic tool with different implementations for automatically
deriving instances of the Functor typeclass.

4. Suggestions for the development of future frameworks. Our paper can also
be seen as a first step towards a suggested Rosetta Stone project for meta-
programming in Rocq, which is stalled [link anonymised].

Outline of the paper. § 2] introduces the example and relevant notions. §§ [3]
to |§| discuss differents aspects of each implementation (including pros and couns).
§ [10] discusses related work. Finally § [[1] puts everything together, and § [I2]
discusses future work.

2 Preliminaries

Meta-programs crucially rely on the features provided by the elaborator of the
proof assistant, such as unification, type checking or inference, and typeclass
resolution. They also need to manipulate the state of a proof assistant, con-
sisting of the global environment (stores global definitions and inductives), local
environment (local variables, and in the case of Rocq also section variables and
hypotheses), and evar-map (unification variables). This manipulation can be
implicit, or explicit by threading the three components through programs.
How binders are represented is a key question for meta-programs. De Bruijn
indices and the locally nameless approach were both introduced by de Bruijn
in his seminal paper [26] and are used in the implementations of Rocq, Agda,
and Lean and consequently in the associated meta-programming frameworks.
The notable exception is Cog-Elpi, which uses higher-order abstract syntax
(HOAS) [68]. We give examples of the representations in the respective sections.
Our example is the generation of instances of the following Functor typeclass:

Class Functor (F : Type -> Type) : Type :=

{ fmap {A B} : (A ->B) ->F A ->FB }.
We have already shown the instance for list in the introduction. Our imple-
mentation also handles more complex types, for instance using nesting:

Inductive tree (A : Type) : Type :=
| Leaf : tree A
| Node : A -> list (tree A) -> tree A.

Fixpoint fmap {A B : Type} (f : A -> B) (t : tree A) : tree B :=
match t with Leaf => Leaf
| Node x ts => Node (f x) (List.map (fmap f) ts) end.

In general, inductives can be non-recursive (e.g. bool, option), recursive (nat,
list), have parameters (option, list), or have indices (vector). We support as
input inductive types with a single (uniform) parameter and no indices. We do
not support mutual recursion for simplicity. For simplicity, the code samples
shown in the paper do not handle recursive inductives: the complete implemen-
tations do handle the general case, apart from the one in Lean, see §

In the case of Node in the example above, we applied £ to the first argument x,
and List.map (fmap f) to the second argument ts. In general, there are various
ways to disambiguate what function to apply. The canonical way is to do type-
based disambiguation. An alternative is to use typeclass inference of the proof
assistant, which is what we do in our implementation.

For instance, we define the second branch as Node (fmap f x) (fmap f ts)
in the example above, and let typeclass resolution determine which functor we

are mapping over. To be able to do so, we need to use the identity functor for x
and for ts the composition of the 1ist and tree functors.
Consequently, we globally declare:

Instance fid : Functor (fun T => T).
Instance fcomp (F G : Type -> Type) ~(Functor F) ~(Functor G)
Functor (fun T => G (F T)).

Naively using the typeclass-based approach may fail in the case of recursive
inductives such as tree or list. For instance in the tree example, typeclass
resolution will fail to find a Functor instance for fmap £ ts (because there is
no instance of Functor tree in scope). We can solve this issue by using a local
typeclass instance. In the case of tree:

Fixpoint fmap {A B : Type} (£ : A -> B) (t : tree A) : tree B :=

let _ := Build_Functor tree fmap in

match t with Leaf => Leaf

| Node x ts => Node (fmap f x) (fmap f ts) end.
Typeclass resolution will now consider the local instance _ : Functor tree when
elaborating fmap f ts. Note that this stretches the limits of what the termination
checker is capable of accepting: we had to disable Agda’s termination checker,
and in the case of Rocq we had to help the guard checker by normalizing fmap
before adding it to the global environment.
We do not expect alternative approaches to this problem to alter the conclu-

sions of this experience report.

3 OCaml Plugin

As Rocq is implemented in OCaml, writing an OCaml plugin is historically the
most common way of meta-programming [65] 73], [29] 24], see Fig. [1| for the code.

Pros — Conceptual [P1 - Plugins have access to full implementation]
Pros — Current |IP2 - OCaml 1s a mature programming language.|

Cons — Conceptual [CT - De Bruijn index arithmetic is difficult]
[C2-"No term quotations)

Cons — Current |IC3 - OCaml plugins are hard to set up]
[C4 = "Cluttered meta-programming APL

|C5 - Explicit state management.|

P1 - Conceptual OCaml plugins allow users to directly access all of Rocq’s im-
plementation. Meta-programs manipulate the kernel representation of terms:

type EConstr.t =

| tRel (idx : int) (*¥* Local wariable. *)

| tApp (£ : EComstr.t) (1 : EConstr.t list) (#*# Application. *)

|

For instance the function build_fmap in our code simply returns a term corre-
sponding to the mapping function over the given inductive:

let build_fmap env sigma ind : evar_map * EConstr.t = ...

The evar-map sigma is updated and returned alongside the resulting term. Meta-
programs have access to all the functionality provided by Rocq, including term
manipulation functions, unification, and the tactic engine. Such direct access
guarantees that the API is complete: users can leverage every customisable as-
pect of the proof assistant, including features not commonly found in other
meta-programming languages, such as the ability to extend the parser. More-
over, it ensures the API stays up to date with the latest Rocq features: when new
features (e.g. universe polymorphism) are added to Rocq, one typically has to
wait some time before the various Rocq meta-languages add support for them.

P2 - Current OCaml is a general-purpose programming language used in many
applications besides Rocq meta-programming and thus enjoys a large ecosystem
of packages, as well as robust and well-maintained tools (such as a language
server, a code formatter, an optimising compiler, a package manager, etc), which
is not the case for Rocq’s other meta-languages.

C1 - Conceptual OCaml plugins directly manipulate the kernel representation
of terms, which uses de Bruijn indices for variables. For instance the term
Af Az y.f x y is represented as A.AA.3 2 1. De Bruijn indices require a sig-
nificant amount of experience to manipulate correctly: writing explicit indices
and lifting terms was a major source of errors when getting started, e.g.

let sigma, arg' = build_arg env sigma
(lift_inputs (i+1) inp) (/mkRel 1)
(Vars.lift 1 ©C EConstr.of_constr 0C get_type decl)
in loop env sigma (i+1) ([1ift (ca.cs_nargs-i-1) arg' :: acc) decls

C2 - Conceptual Most meta-languages provide a high-level method to build
terms using term quotations, which is a lightweight mechanism allowing one
to turn user syntax terms into the internal representation used by the meta-
language. Plugins do not provide any quotation mechanism: building terms is
thus rather verbose and tedious. In the absence of term quotations, one has to
provide fully qualified kernel names, pass all implicit arguments to functions,
provide typeclass instances by hand (or manually create unification variables to
stand in for unknown instances), and explicitly instantiate all universe polymor-
phic constants and inductives.

C3 - Current Integrating a plugin into a build system currently requires signif-
icant overhead, even when using the modern dune build system for Rocq: one
has to include plugin-specific dune stanzas as well as several other build-specific
files. This is in stark contrast with most other meta-languages.

C4 - Current The plugin API is cluttered, thus hard to use for non-experts. It
provides code to accomplish common meta-programming tasks but finding the
right function often requires reading their implementation (i.e. reading *.ml files
in addition to *.mli files), or asking the Rocq developers for help. Fortunately
the developers are easy to reach (via online forums) and eager to provide help.

C5 - Current Finally, plugins provide no good solution for managing the prover
state: the environment and evar-map are explicitly passed as arguments to and

returned from most functions. For instance, here is the code which builds the
outer lambda abstractions of fmap:

let build_fmap env sigma ind : evar_map * EConstr.t =

lambda env sigma "a" ta @@ fun env ->

lambda env sigma "b" tb @@ fun env ->

lambda env sigma "f" (arr (mkRel 2) (mkRel 1)) @@ fun env ->

lambda env sigma "x" (apply_ind env ind 0@ mkRel 3) @@ fun env ->

(sigma, ...)

Here lambda env sigma "x" T k builds a lambda abstraction with a binder named
x and of type T; the continuation k takes in the new environment (updated with
a binding for x) and returns the body of the lambda abstraction alongside the
updated evar-map. The resulting code is verbose and obfuscates the core logic.

4 OCaml Plugin - Locally Nameless Version

De Bruijn indices are arguably the most common binder representation in im-
plementations of dependently-typed proof assistants (Rocq, Agda, and Idris all
use de Bruijn indices internally), however an alternative is locally nameless, in
which bound variables are represented using de Bruijn indices, but free variables
are named. For instance the term Ax.\y.f x y (which has one free variable f)
is represented in locally nameless as A.\.f 1 0. Maintaining the locally name-
less invariant as terms are traversed requires some amount of bookkeeping from
the user, but crucially all index arithmetic and lifting is performed by the API.
We refer to McBride and McKinna [56] for an introduction to programming
with locally nameless, and to the work of Charguéraud [I6] for a more formal
perspective.

Rocq already has most of the infrastructure needed for locally nameless:
indeed, section variables and local hypotheses are represented using named vari-
ables instead of indices. We can reuse these named variables to represent free
variables. Named variables have good support in the OCaml implementation:
they have their own named local context, and most functions which take as in-
put the global environment and local context — such as unification or typeclass
search — also support the named local context. Using named variables, we can
implement a small library of term manipulation functions in the locally nameless
style, and use it to improve the plugin of the previous section by removing the
friction points related to index manipulation.

Figure [2] shows the corresponding code. The lambda function has been re-
placed by namLambda:

namLambda (env : Environ.env) (sigma : Evd.evar_map) (name : string)
(ty : EConstr.t) (mk_body : Environ.env -> Evd.evar_map ->
Names.variable -> Evd.evar_map * EConstr.t)
Evd.evar_map * EConstr.t
The most notable difference is that namLambda passes a fresh named variable x to
the continuation mk_body. The continuation builds a term in which x is free, and
namlLambda subsequently replaces all occurrences of x in the body by de Bruijn

index 1 (de Bruijn indices start at 1 in plugins). Additionally, when referring to
variable x we use mkVar x instead of writing down the exact de Bruijn index.

The switch to locally nameless is the only difference between the plugin of §
and this version; we concentrate on the pros and cons that come with locally
nameless.

Pros — Conceptual [P1 - Locally nameless removes the frictions of de Bruijn indices.|
Pros — Current P2 - Rocq 1s easy to extend with a locally nameless API.|

Cons — Conceptual [CT - Possible performance issues associated to locally nameless.|
Cons — Current

P1 - Conceptual We found programming using locally nameless much easier than
using de Bruijn indices. Using locally nameless, one never has to write exact de
Bruijn indices, perform index arithmetic, or lift terms. For instance, compare
the first lines of build_fmap using de Bruijn indices (in Figure [1)):

lambda env sigma "a" ta @@ fun env ->

lambda env sigma "b" tb @@ fun env ->

lambda env sigma "f" (arr (mkRel 2) (mkRel 1)) @@ fun env ->
lambda env sigma "x" (apply_ind env ind @@ mkRel 3) @@ fun env ->

And using the locally nameless style (in Figure [2)):

namLambda env sigma "a" ta @C fun env sigma a ->
namLambda env sigma "b" tb 0@ fun env sigma b ->
namLambda env sigma "f" (mkArrowR (mkVar a) (mkVar b)) @O fun env sigma f
namLambda env sigma "x" (apply_ind env ind 00 mkVar a) @@ fun env sigma x

P2 - Current Locally nameless integrates well with Rocq’s internal API: even
intermediate terms which contain named (free) variables are compatible with
Rocq’s infrastructure, and can be passed for instance to unification or type
checking. The fact that Rocq has such good support for named variables out of
the box made it very easy to use a locally nameless style. Without such support
we would need to implement a separate representation for terms, and convert
back and forth between these two representations, causing both performance and
usability issues.

C1 - Conceptual The locally nameless binder representation requires very fre-
quent substitution of named variables with de Bruijn indices, and vice versa;
although this is hidden from the user, it does have an impact on performance.
Measuring the precise cost of these substitutions in practice is outside the scope
of this study, but we did not notice a significant performance degradation in
our case. If it becomes an issue, one can use a pure de Bruijn representation
in performance-critical sections, breaking the locally nameless invariant locally,
while still enjoying locally nameless in the rest of the code. This is exactly
what the implementation of Lean 4 does, in addition to some simple caching
optimisations to improve the performance of substitutions in common cases. Im-
plementing these optimisations in Rocq is not as straightforward as one would
hope, and has not been done in this study.

Locally nameless in other frameworks One could also imagine using MetaRocq’s
implementation to work with locally nameless. Unfortunately most of the API
does not work well with named variables because they do not occur in closed
terms checked by the kernel, and thus MetaRocq does not even have a notion
of named local context. Following a locally nameless discipline would require
one to either convert terms to a pure de Bruijn representation on the fly when
calling MetaRocq functions, or add support for named variables throughout the
entirety of MetaRocq, requiring significant engineering effort.

5 MetaRocq

The MetaRocq project [B [76] is a fully verified re-implementation of Rocq’s ker-
nel in Rocq, and also includes a meta-programming API in one of its subprojects.
The bare-bones meta-programming framework has been used in [23] 48] [35] [77,
136, [7, 27, [[6]. Figure [3] shows the Rocq code for the MetaRoeq plugin.

Pros — Conceptual [PI - Users already know Rocq]|
P2 - Meta-programs can be formally verified.|

Pros — Current 3 - Significant parts are formally verified.|

Cons — Conceptual [C1 - De Bruijn index arithmetic is difficult]
2 - Lack of abstractions to handle effects.
- BExplicit state management.

|C4 - Missing high-level meta-programming features.

Z b - FPI‘ ormance 1sSsues 11 _Soime (’RQPQI

Cons — Current

P1 - Conceptual An appealing aspect of MetaRocq is the ability to perform
meta-programming directly using the host language Rocq, flattening the learning
curve significantly. To this end, the AST of terms is reified in Rocq:

Inductive term :=
| tRel : nat -> term
| tApp : term -> list term -> term

l

Rocq’s kernel is re-implemented in Rocq, thus standard functions such as
reduction, conversion, and type checking are readily available:

(#¥* Conversion checking, implemented in Rocq. *)
Definition eq_term : term -> term -> bool.

For higher-level APIs (e.g. extending the global environment), MetaRocq comes
with a monad TemplateMonad with bindings to Rocq’s actual OCaml implemen-
tation:

(#¥* Declare a new constant. Simply a wrapper around 0Caml code. *)
Axiom tmMkDefinition : constant_entry -> TemplateMonad unit.

Such monadic programs can be run using the MetaRocq Run command.

P2 - Conceptual In addition to useful meta-programming features, MetaRocq
includes an extensive formalisation of Rocq’s type theory, with proofs of key
results of theoretical interest such as subject reduction. It is possible to formally
verify meta-programs by leveraging Rocq’s theorem proving features in combi-
nation with the numerous lemmas already present in MetaRocq. Note however
that there is no specification for the operations which use the template monad:
verifying meta-programs which use high-level features such as unification or type
inference is still an active research area.

P3 - Current Many of the functions provided by MetaRocq are formally verified
with respect to Rocq’s type theory, providing strong correctness guarantees.
This is used to build a certified extraction procedure by Forster, Sozeau, and
Tabareau [35]. Formal verification is very appealing considering the complexity
inherent to proof assistants; note however that verified implementations often
do not benefit from the same optimisations and clever heuristics (for instance
reduction using explicit substitutions or abstract machines) as the equivalent
code in Rocq’s OCaml implementation.

C1 - Conceptual MetaRocq implements binders using de Bruijn indices, which
have the same drawbacks we explained in §

C2 - Conceptual Rocq does not provide abstractions to handle effects such as
printing, raising exceptions, or writing non-terminating functions, so writing
non-trivial programs quickly becomes tedious. Herbelin’s reduction-effects
plugin [41I] allows to print values, but is currently only suitable for debugging.
Moreover, writing partial or possibly non-terminating programs is impractical:
Common solutions include disabling the guard checker or using step-indexing.

MetaRocq relies crucially on monads to handle effects, most notably the
template monad, which is in our experience a notable friction point: monadic
programs in Rocq are difficult to debug, as programming errors often cause im-
plicit argument resolution to fail, leading to obscure error messages. There does
not seem to be a consensus on how to implement monads in Rocq: a promis-
ing attempt is the Monae library [74] which formalises monads in the style of
Rocq’s Mathematical-Components library using the Hierarchy Builder tool [19].
MetaRocq packages its own monad library following a simpler design called semi-
bundled typeclasses. The latter approach is used successfully in languages such as
Haskell and in Lean’s mathematical library [55], but its current implementation
in MetaRocq is unsatisfactory.

C3 - Current State management in MetaRocq is explicit: the global environment
and local context have to be threaded manually, and this issue will only worsen
as more state (such as the evar-map) is added. Rocq being a pure language, the
obvious solution is to use monads to hide the state.

C4 - Current MetaRocq’s high-level API lacks many crucial features. Indeed,
MetaRocq only re-implements Rocq’s kernel: higher-level features such as unifi-
cation or typeclass resolution have to be exposed via bindings to Rocq’s actual
OCaml implementation. Many of these bindings are either missing or incom-
plete. For instance, unification is entirely missing, and defining new constants
does not currently support universe polymorphism.

10

C5 - Current Performance of MetaRocq programs which use the template monad
can be quite poor: we noticed slowdowns of up to two orders of magnitude.
Obtaining reasonable performance required writing our program in two layers.
The inner layer build_fmap does not make use of the template monad. All ef-
fects (e.g. declaring the new typeclass instance) are pushed to the outer layer
derive_functor:

(¥* Inner layer: butild the mapping function for a given inductive. *)
Definition build_fmap : inductive -> term.
(¥* OQuter layer: wrap build_fmap with pre- and post-processing. *)
Definition derive_functor {A} : A -> TemplateMonad unit.

This approach does not scale: in a more realistic meta-program, build_fmap
might need to perform unification or typeclass resolution, which requires using
the template monad.

6 Agda

Meta-programming in Agda is similar to MetaRocq: Meta-programs are directly
written in Agda, using the Reflection API [80], and interact with the elaborator
and kernel via the TC monad. Figure [f] shows the code for the Agda plugin.

Pros — Conceptual [PI - Users already know Agda.
Pros — Current P2 - Implicit state management using monads.|

Cons — Conceptual [C1 - De Bruijn index arithmetic is difficult.
C2 - Restrictive term representation.

Cons — Current C3 - Type-class search 1s hard to control.

(Z = Feriormam’e 1SSuUes 11 _Some cases

P1 - Conceptual Agda meta-programs are simply Agda programs with a return
type in the type checking monad (TC): this has the benefit that users do not
need to learn a new programming language. MetaRocq uses the same approach
based around a monad — the MetaRocq equivalent of the type checking monad
is the template monad — however in Agda’s case the type checking monad also
contains the prover state, whereas in MetaRocq the state is threaded explicitly.

P2 - Current The prover state is contained in the type checking monad. It is
accessed through primitives provided by the type checking monad, e.g.:

-- Get the definition of a constant.
getDefinition : Name -> TC Definition
-- Extend the current contezt with a variable.
extendContext : {a} {A : Set a} -> String -> Arg Type -> TC A -> TC A
We found monadic programming in Agda to be lightweight and enjoyable,
thanks to the extensive library agda-stdlib-classes [20] based on typeclasses.

C1 - Conceptual Agda implements binders in terms using de Bruijn indices,
which have the same drawbacks we explained in § [B] Additionally, we note that
the API to manipulate the local (de Bruijn) context is currently awkward to use:
for instance some functions expect the context in reverse order (last to first), and
some expect it in normal order (first to last).

11

C2 - Conceptual The internal representation of terms is quite restrictive. First,
let bindings (as well as where clauses) are not represented in the abstract syntax,
but are instead inlined during type checking: meta-programs cannot make use of
such features when building terms. Second, terms are represented in spine form
(the head of an application cannot be a lambda abstraction), making it difficult
to build some terms. Implementing substitution on this representation of terms
is quite delicate, and in fact there is no substitution function available in the
meta-programming API (some third-party libraries [62] implement substitution).

C3 - Current Type-class resolution is difficult to use when meta-programming.
First, although Agda has the concept of local typeclass instances, using local
instances via the meta-programming API is not directly supported and requires
awkward workarounds. Second, Agda’s implementation of typeclass search is
quite weak when compared to Rocq and Lean: support for overlapping instances
and backtracking search is relatively recent, and recursive instances can still
cause typeclass resolution to loop. This is because instance search is imple-
mented using a depth-first search. In our case a crucial typeclass instance (for
the composition of functors) is recursive: we had to cap instance search at a very
low depth to get acceptable type checking times. This workaround would not
scale to real-world applications, and in our case means that our Agda example
does not support deeply nested inductives.

C4 - Current Performance of meta-programs in the type checking monad can
be poor: we noticed significant slowdowns compared to equivalent pure code on
small examples, but providing larger benchmarks is outside our scope.

7 Ltac2

In the above sections, we have built fmap by directly manipulating the kernel
representation of terms. An alternate approach, following the Curry-Howard
correspondence, is to use tactics to produce a proof term:

fmap : forall AB, (A ->B) ->F A -> F B.
For example, using Ltac2 tactics one can define fmap on option as:

Definition fmap : forall A B, (A -> B) -> option A -> option B.
intros A B f x. destruct x.
- (* Some *) intros y. constructor 0. exact (f y).
- (* lNone #*) constructor 1.

Defined.

Here low-level details such as binder representation are taken care of by
dedicated tactics such as intros: there is no need to handle the internal repre-
sentation of terms. This observation remains true when generalising to arbitrary
inductives. Consider the code corresponding to the tactics intros and destruct
for an arbitrary inductive:

12

(* Ezpects a goal of the form [forall 4 B, (4 -> B) -> F 4 -> F B]. %)
Ltac2 build_fmap F : unit :=

(* intros 4 B f z *)

intro @A ; intro @B ; intro @f ; intro ©x ;

(* destruct = *)

Std.case false (Control.hyp ©@x, NoBindings) ;

(* Build each branch. *)

let n_ctors := ... in

Control.dispatch (List.init n_ctors (build_branch F ©A @B @f)).

Using tactics for meta-programming is not a novel idea: the elaborator of
Idris 1 [12] uses tactics to transform concrete syntax into abstract syntax. We
are however not aware of other meta-programming uses.

Pros — Conceptual [PI - No need to manipulate the Tow-level term representation.]
Pros — Current P2 - Implicit state management.|

Cons — Conceptual [CT - Tmplicit backtracking.|

Cons — Current S;E - i;tacg 1S missing many Easw ianguage features.

|C4 - Incomplete meta-programming APL|

P1 - Conceptual Tactics remove the need to manipulate the low-level kernel
representation of terms. For instance, one never has to deal with de Bruijn in-
dices when building terms. In fact, tactics follow the locally nameless discipline:
free variables are treated as local hypotheses, and are represented using names.
The tactic intro x removes the outermost binder in the goal and replaces all
occurrences of de Bruijn index 0 with named variable x; conversely, the tactic
revert x replaces all occurrences of named variable x in the goal with de Bruijn
index 0 and adds a binder. Tactics generally maintain the same invariant as lo-
cally nameless: free variables are represented using names, while bound variables
use de Bruijn indices. Most importantly, users do not have to care about such
considerations at all: while Ltac2 does provide ways to access the underlying
representation of terms (using de Bruijn indices), at no point is this needed in
our code.

P2 - Current Ltac2 does not explicitly expose the prover state. Information
about global constants, local variables and unification variables can be queried
when needed. However the current API to interact with the prover state is in
our opinion difficult to use and could be improved, as discussed in [C4]

C1 - Conceptual A unique characteristic of tactics is implicit backtracking, as
described by Spiwack|78]. Tactics produce a lazy stream of successes, optionally
followed by a single failure. For instance the constructor tactic tries to apply
the first constructor of an inductive; if the following tactic fails, the proof engine
backtracks up to constructor, which is asked for a second success, until all
constructors have been tried. Such lightweight backtracking is useful for proof
construction, but not for meta-programming, and we even argue that implicit
backtracking could be harmful in the context of generating terms with compu-
tational content, as it decreases predictability.

13

C2 - Conceptual Reasoning about tactic programs, both informally and formally,
is very difficult. The main reason — in addition to implicit backtracking which
was discussed above — is that the tactics of most proof assistants pile heuristic
on heuristic, such that statically specifying the effects of a tactic is practically
impossible. We are not aware of existing work on formal reasoning about tac-
tics, but since tactics are effectful programs using a tailored program logic is
conceivable.

C8 - Current Ltac2 is missing many convenience features at the language level,
such as syntactic sugar or a proper printing mechanism. Its standard library is
bare-bones, and documentation and learning resources are scarce. The language
is however under active development.

C4 - Current Ltac2 is primarily a tactic language, and is missing many basic
meta-programming features. Extending the global environment is impossible,
declaring new unification variables or local variables is difficult, and manipu-
lating the kernel representation of terms is impractical. In general the low-level
APT to manipulate the kernel terms is lacking, and most high-level facilities (in-
cluding unification, term quotations, and most of the OCaml API re-exported by
Ltac2) do not support terms containing free de Bruijn indices. Moreover, switch-
ing between tactic mode and direct term manipulation is hard to perform: in our
case it was necessary (for technical reasons related to Rocq’s guard checker) to
normalise the term built by build_fmap, which required awkward workarounds.

8 Lean

The elaborator of Lean 4 (including parsing, unification, type inference, and
typeclass resolution) is implemented in Lean itself [58], and self-hosting the ker-
nel is subject to active research (see the Leand4Lean project [14]). Meta-programs
are simply Lean programs which have access to the Lean implementation. Lean’s
meta-programming features are used in many projects [50} 10}, 49} [60], notably its
mathematical library [55], and most of the implementation of Lean’s elaborator
can be considered meta-programming. Fig. [f] shows the Lean code.

Pros — Conceptual [PI - Users already know Lean]
[P2="Access to complete Lean implementation.]

P3 - Locally nameless binder representation.|
Pros — Current P4 - Implicit state management using monads.|

Cons — Conceptual [CT - Restricted term representation.|
Cons — Current

P1 - Conceptual Meta-programming is done directly in Lean: this has the benefit
of relieving the user from learning a new domain-specific language, but goes much
further, as explained in the next paragraph.

P2 - Conceptual Meta-programs can access the entire API of the Lean imple-
mentation. This has benefits for the developers, which do not need to manually
expose bindings to every useful API function, and allows users to seamlessly

14

access parts of the implementation which would typically not be part of a meta-
programming language, e.g. related to the concrete syntax of terms, such as the
parser. We also note that support for instrumenting the parser to implement var-
ious notations, macros, and embedded DSLs is particularly good. In fact Lean
macros are so powerful that they allow some form of basic meta-programming,
although we did not make use of such functionality during this study. We refer
the reader to the work by Ullrich [83] for an overview of Lean macros.

P3 - Conceptual Local variables are internally represented using locally name-
less: free variables use names, while bound variables use de Bruijn indices. For
instance the term Ax.A\y.f = y, which has one free variable f and two bound
variables x and y, is represented as AA.A.f 2 1. The user is responsible for
maintaining the invariant that free variables are named and bound variables use
indices. For instance in our code:

-- Butld the function “fmap' as “fun 4 B f = => body'
def buildFmap ind : MetaM Expr := do
-- The body contains free (i.e. nmamed) variables.
let body := ...
-- Replace names with indices and add lambda abstractions.
mkLambdaFVars #[A, B, f, x] body

Overall there is no need to directly manipulate de Bruijn indices, and we found
locally nameless to be pleasant to use.

P4 - Current Lean is a pure language, and modifying prover state is done us-
ing monads: this provides the lightweight programming experience of implicit
state, while keeping some level of control over which effects can be performed. A
meta-program in CoreM can access the global environment but may not assign
metavariables, while a meta-program in MetaM has access to the global environ-
ment, local context, and metavariables. We note that Lean has excellent support
for monadic programming, as described by Ullrich and de Moura [84].

C1 - Conceptual Lean’s abstract term syntax has no first-class fixpoints or case
expressions (as for instance in Rocq): instead, concrete syntax fixpoints and
case expressions are compiled to primitive recursors, which are represented as
global constants with special reduction rules. For instance a case expression on
an option is represented as an application of the ~“option.casesOn primitive
recursor.

Benefits include having a simpler meta theory and no need for a guard checker
in the kernel. However, we perceived this as a severe limitation. In practice
recursors for nested inductives quickly become unwieldy. Because the fixpoint
and pattern matching compiler only accepts concrete syntax, it cannot be used
by meta-programs which work on abstract syntax.

Generating concrete syntax (instead of abstract syntax) solves this particular
issue with fixpoints and case expressions, but concrete syntax is very difficult
to manipulate, and most functions in the Lean meta-programming API (such as
unification or type inference) do not work with concrete syntax. Due to these
difficulties, our Lean implementation does not support recursive inductives (e.g.
lists or trees).

15

9 Elpi

Elpi is a logic programming language based on AProlog [59] which can be used as
a meta-programming language for Rocq [75] 27, 22| [T8] 8T, 38}, 54]. Elpi is notably
used to implement Hierarchy Builder [19], a type checker and elaborator for the
Calculus of Inductive Constructions [40], and a typeclass resolution algorithm
for Rocq [33]. Figure [7| shows the Elpi code.

Pros — Conceptual [P1 - Higher-order abstract syntax.]
Pros — Current P2 - Powertul quoting and unquoting mechanism.|

Cons — Conceptual |C1 - Paradigm shift (logic programming).|
Cons — Current C2 - Limited representations for structured data.|

P1 - Conceptual A key feature of Elpi is the abstract syntax it uses for Rocq
terms, and in particular for binders, called higher-order abstract syntax (HOAS)
and due to Pfenning and Elliott [68]. The syntax of Rocq terms is encoded in a
data-type term, of which we show a few constructors:

type app list term -> term.
type fun name -> term -> (term -> term) -> term.

Application nodes are represented using app, lambda abstractions using fun.
There is no constructor for variables. The last argument of fun is the body of
the lambda abstraction, an elpi function of type term -> term: Rocq variables
correspond to Elpi variables. For instance the Rocq function fun x : nat => x
is encoded in Elpi as fun "x° (global (indt knatp)) (x\ x), where x\ x is the
Elpi identity function.

Meta-programming in Elpi does not require dealing with de Bruijn arith-
metic, and the type checker helps catch scope issues when building terms. Overall
we found HOAS easy to use.

We note that HOAS relies crucially on the logic programming aspects of Elpi.
HOAS is incompatible with dependently typed proof assistants due to the strict
positivity condition on inductives, and even in languages such as OCaml in which
it is possible to define a HOAS term grammar, it is unclear how to define basic
term manipulations (such as counting the number of variables) [17, Section. 2.1].
We did not investigate parametric higher-order abstract syntax [17].

P2 - Current Elpi offers a powerful quotation mechanism to build the AST of
Rocq terms with Rocq user syntax. Quotations are inserted using braces:

pred build-fmap i:inductive, o:term.
build-fmap I {{fun A B (f : A -> B) (x : 1p:(FI A)) => 1p: (M A B f x)}

Anti-quotations 1p: (...) insert elpi code inside quotations. Most importantly,
quotations and anti-quotations allow open terms. This is not the case in most
meta-languages which support quoting (Lean being a notable exception). More-
over, Rocq unification variables correspond almost one to one with Elpi unifica-
tion variables, allowing meta-programs to trigger Rocq’s unification simply by
using Elpi’s built-in unification.

16

C1 - Conceptual Elpi is a logic programming language, which is a paradigm shift
compared to dependently-typed proof assistants. An Elpi program is composed
of predicates, which relate input(s) to output(s):

pred build-fmap i:inductive, o:term.

build-fmap I F :- ...

The program above declares the predicate build-fmap with one input I (the
inductive we are mapping over) and one output F (the term fmap we are building).
The second line adds a rule with conclusion build-fmap I F, which describes how
to build the term F given I. A consequence of this paradigm shift is that Elpi
comes with a steep learning curve.

C2 - Current On the language level, Elpi provides limited options for represent-
ing structured data. There are no ML-style records; in fact it is common for Elpi
functions to have more than half a dozen input and output parameters, e.g.:
pred build-branch i:inductive, i:term, i:term, i:term, i:term,
i:term, i:list term, i:list term, o:term.

Only open sums are available: constructors can be added at any point in the
program. Open sums enable clever programming tricks, but the lack of closed
sums prevents static checking of whether a function handles all input cases.

10 Related Work

Dubois de Prisque [27] compares Ltacl, Ltac2, MetaRocq, and Elpi as meta-
programming languages in tutorial style through different examples. The method-
ology differs from ours in that the choice of frameworks is restricted to a single
proof assistant (Rocq), and we focus on a single example which - while realis-
tic enough to highlight many issues - yields implementations simple enough to
be understood by non-experts. The conclusions of Dubois de Prisque are that
Ltacl lacks a clear semantics and static typing, and tactics not being allowed
to have side effects and return a value leads to ubiquitous, hard-to-read CPS
translations. Ltac2 solves many of the issues of Ltacl, but manipulating the
low-level term representation is difficult (many things were even impossible at
the time the thesis was written). MetaRocq allows to manipulate the low-level
term representation, and might allow formally proving correctness of the meta-
programs. However, de Bruijn arithmetic and the lack of proper abstractions for
effects (in particular mutable state and non-terminating functions) is criticised.
For Elpi, Dubois de Prisque lauds the benefits of HOAS and remarks that term
quotations are beneficial. However, HOAS seems to be difficult for term-to-term
transformations when the structure of the output is very different from the in-
put. Writing tactics was reported as tedious, which however could be a problem
related to how Elpi represents the proof context, i.e. might not be conceptual.
HOL-based proof assistants come with meta-programming support in their
host language. HOL4 and HOL light might offer the most natural experience,
since proving happens just in an OCaml session. Isabelle allows meta-programming
in Standard ML. Beluga is a proof assistant for the mechanisation of meta-theory
based on contextual modal type theory. There is a lot of ongoing work on how
to make quotation native in contextual modal type theory and thus allow cer-

tifiable meta-programming [43] [69] 44,14.%6, 45, [42]. The concerns of this setting

are somewhat orthogonal to ours: they try to understand the foundations of
meta-programming by extending type theory, whereas we focus on power and
usability of frameworks that are built on top of type theory.

11 Conclusion

OCaml MetaRocq Agda Lean Ltac2 Elpi
De Bruijn indices X X X X
Restricted term AST X X
No quasi-quotations X X X X
Explicit prover state handling X X
Cannot verify meta-programs X X X X X X

Conceptual issues with each meta-programming framework.

OCaml MetaRocq Agda Lean Ltac2 Elpi
Need to learn a new language X X X
Incomplete API X X X X
Lack of learning resources X X
Lack of documentation X X X X X X

Current issues with each meta-programming framework.

Conceptual. Binder representation was a recurring issue in this paper. Meta-
programs involve manipulating terms as data, and as such it must be easy to
construct and inspect the structure of terms, including binders. In particular,
we note that our de Bruijn-based implementations use arithmetic on indices,
which leads to frequent mistakes and bugs. The locally nameless representation
simplifies writing correct code, but comes with minor efficiency considerations.
Finding the best representation for meta-programming is still an open problem.

Term representation is crucial, which became especially apparent for the ex-
ample in Lean 4, where the need to fall back on primitive recursors prevented us
from implementing a plugin with the same features as in the other systems (our
implementation does not support recursive types such as lists). Term represen-
tation was also an issue in Agda, because the abstract syntax does not contain
let-bindings and terms can only be beta-normal. Thus, a meta-programming
framework must either expose a sufficiently expressive term representation, or a
high-level API to build terms if the representation of kernel terms is too low-level.

Term quotations allow one to use user syntax directly when constructing
and pattern matching on terms, thereby removing the need to spell out low-
level details such as fully qualified constant names, implicit arguments, typeclass
instances, or universe levels. Additionally, term quotations allow some amount
of type checking at compile time (such as scope analysis) which allows one to
catch errors earlier. Quasiquotations (i.e. the ability to nest anti-quotations and
quotations) and the ability to quote open terms are especially useful, but are
currently only supported in Lean and Elpi.

18

State is inherent to meta-programs, which can read and modify the global en-
vironment, local environment, and unification state. A good meta-programming
framework must more generally provide good abstractions to deal with various
kinds of effects, such as printing, exceptions, non-termination, and (prover) state.
Lean and Agda handle printing using an 10 monad and generally provide good li-
braries, while Rocq only provides ad hoc printing using the reduction-effects
plugin [41] and does not have a satisfactory monad library (see §[5).

Verifiability is a desirable property of frameworks. Ideally formal verification
of meta-programs should be possible. Verification is not so attractive for users
of meta-programs because properties such as well-typedness can be checked a
posteriori by the kernel, but implementors of meta-programs might be interested
in (partial) correctness guarantees. Indeed, formal specifications can partly re-
place documentation — which is lacking for all considered frameworks anyway —
and can help in writing correct meta-programs, which is far from an easy task
considering the complexity of the underlying systems.

Current. The learning curve of a meta-programming framework is crucial, and
writing meta-programs in a different language than that of the underlying proof
assistant leads to a steeper curve. Learning Elpi was especially challenging due
to the paradigm shift to logical programming.

Many meta-programming frameworks provide an incomplete meta-program-
ming API missing crucial features such as the ability to define new constants
dynamically (Ltac2, Agda), bindings to high-level algorithms such as unification
and type inference (MetaRocq), or support for e.g. mutual inductives (Elpi).

A proper meta-programming language requires adequate tooling, such as a
language server, a documentation generator, an optimising compiler or efficient
interpreter, and a good integration with the proof assistant’s build system. Most
of these tools come for free when the meta-language is the proof assistant itself
or an already established programming language (such as OCaml), but require
significant engineering work in the case of a DSL (e.g. Elpi or Ltac2).

Finally, we note that documentation is lacking for all considered frameworks,
and some frameworks even lack basic learning resources.

Precise performance considerations are outside the scope of this paper, al-
though we did comment on performance when relevant. We argue that meta-
programming should prioritise usability over performance when possible. Per-
formance is however important when considering tactic programming or more
complex meta-programs such as unification algorithms and type checkers.

Summary Conceptually, two promising meta-programming approaches emerge:
directly in the proof assistant or using a domain-specific language (DSL).

The first option, while of course relieving users from learning a new pro-
gramming language, also provides crucial benefits to the quality of the tooling
and libraries available for meta-programming. Moreover, this option allows users
to verify their meta-programs. Verifying meta-programs requires both a speci-
fication of the basic meta-programming operations provided by the framework,
and adequate means to use these basic specifications in order to derive guaran-
tees about complex meta-programs. We note that one cannot realistically expect

19

to prove that the meta-programming framework fulfills its specification, as this
would amount to proving the correctness of the entire elaborator and kernel of
the underlying proof assistant. A more realistic approach is to interface with two
implementations of the elaborator and kernel: a naive but verified implementa-
tion & la MetaRocq [7T], and an efficient but unverified implementation.

The second option does not allow certifying meta-programs, but enables using
domain-specific programming language features. Elpi is an example of such a
DSL: logic programming is a valuable tool for working with syntax and binders.

In both cases, one needs a feature-complete meta-programming API, which
stays up to date with the evolution of the proof assistant. For implementors of a
meta-programming framework, bootstrapping the proof assistant gives a feature-
complete API for free, but requires significant work a priori (for instance Lean 4’s
elaborator is bootstrapped). An alternate approach, which MetaRocq and Agda
follow, is to do meta-programming directly in the proof assistant, without boot-
strapping. Interfacing with the elaborator is done using a meta-programming
monad, which from a user’s point of view is very similar to bootstrapping.

12 Future Work

A natural direction for future work is to extend this study to other systems. On
the side of dependently-typed programming languages, Idris 2 seems to come
with a built-in plugin for deriving functor instances [3], which is however more
general than our plugin, since it covers all types that can be proved functorial. In
this paper, we focused on proof assistants rather than programming languages.
Regarding proof assistants, it would be interesting to extend the study to systems
from the HOL family, as well as to Beluga [70], Abella [37], or Dedukti [8]. We
believe that insights will be largely orthogonal though, since both the underlying
theory and the implementation methods differ vastly.

We also want to study term-to-term transformations, where we expect most
of our results to carry over, although Dubois de Prisque remarks that HOAS can
cause issues for these transformations [27]. Surveying tactic frameworks might
also provide valuable insights. There are however far fewer tactic- than meta-
programming frameworks: a survey would amount to comparing proof assistants.

An orthogonal direction is to extend one of the implementations into a stan-
dalone tool, and derive Functor instances for more general types, following the
ideas of Laurent, Lennon-Bertrand, and Maillard [47].

A central direction for future work is to develop a meta-programming frame-
work based on our insights, potentially in parallel for different proof assistants.
We believe that a key insight is that meta-programs are inherently effectful
programs, which have access both to generic effects such as failure and non-
termination, and to domain-specific effects such as the ability to read and mod-
ify the global environment, local context and evar-map. We also argue that,
considering the complexity of the underlying systems, verifying meta-programs
is of great interest for implementors of meta-programs. These ideas hint at the
possibility of using powerful verification techniques to ease reasoning about meta-

20

programs: following the line of work on Dijkstra monads [2, [62] 53] one can use
specialised program logics tailored to domain-specific effects, and in particular
separation logic to handle the evar-map, building on ideas from Nigron and Da-
gand [61] and Vistrup, Sammler, and Jung [88]. The line of work on algebraic
effects [71 28] and the Andromeda proof assistant [II] is also very relevant.

21

1]

2]

3]
[4]

[5]

[6]

8]

191

[10]

[11]

Bibliography

Andreas Abel, Guillaume Allais, Aliya Hameer, Brigitte Pientka, Alberto
Momigliano, Steven Schéfer, and Kathrin Stark. POPLMark Reloaded:
Mechanizing proofs by logical relations. J. Funct. Program., 29, 2019.
Danel Ahman, Catalin Hritcu, Kenji Maillard, Guido Martinez, Gordon
Plotkin, Jonathan Protzenko, Aseem Rastogi, and Nikhil Swamy. Dijkstra
monads for free. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL ’17, page 515-529, New York,
NY, USA, 2017. Association for Computing Machinery.

Guillaume Allais and André Videla. Deriving for functor instances in idris
2 (idris 2 standard library).

Abhishek Anand, Andrew W. Appel, Greg Morrisett, Zoe Paraskevopoulou,
Randy Pollack, Olivier Savary Bélanger, Matthieu Sozeau, and Matthew Z.
Weaver. Certicoq : A verified compiler for coq. 2016.

Abhishek Anand, Simon Boulier, Cyril Cohen, Matthieu Sozeau, and Nico-
las Tabareau. Towards certified meta-programming with typed template-
coq. In ITP 2018, pages 20-39, 2018.

Abhishek Anand, Anvay Grover, John Li, Greg Morrisett, Randy Pollack,
Olivier Savary Belanger, Matthew Weaver, Andrew Appel, Yannick Forster,
Joomy Korkut, Zoe Paraskevopoulou, Kathrin Stark, and Matthieu Sozeau.
Certicoq: A verified compiler for coq (github repository). accessed Feb 18th
2025, 2025.

Danil Annenkov, Jakob Botsch Nielsen, and Bas Spitters. Concert: a smart
contract certification framework in coq. In Jasmin Blanchette and Catalin
Hritcu, editors, Proceedings of the 9th ACM SIGPLAN International Con-
ference on Certified Programs and Proofs, CPP 2020, New Orleans, LA,
USA, January 20-21, 2020, pages 215-228. ACM, 2020.

Ali Assaf, Guillaume Burel, Raphaél Cauderlier, David Delahaye, Gilles
Dowek, Catherine Dubois, Frédéric Gilbert, Pierre Halmagrand, Olivier
Hermant, and Ronan Saillard. Dedukti: a logical framework based on the
AM-calculus modulo theory. CoRR, abs/2311.07185, 2023.

Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster,
Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn,
Stephanie Weirich, and Steve Zdancewic. Mechanized metatheory for the
masses: The POPLMark challenge. In Joe Hurd and Tom Melham, editors,
Theorem Proving in Higher Order Logics, pages 50—65, Berlin & Heidelberg,
2005. Springer.

Anne Baanen. A lean tactic for normalising ring expressions with expo-
nents (short paper). In Nicolas Peltier and Viorica Sofronie-Stokkermans,
editors, Automated Reasoning, pages 21-27, Cham, 2020. Springer Interna-
tional Publishing.

Andrej Bauer, Gaétan Gilbert, Philipp G. Haselwarter, Matija Pretnar,
and Christopher A. Stone. Design and Implementation of the Andromeda

[12]

[13]

[14]

[15]

[16]
[17]
[18]

[19]

[20]
[21]

[22]
[23]
[24]
[25]

[26]

[27]

Proof Assistant. In Silvia Ghilezan, Herman Geuvers, and Jelena Ivetic,
editors, 22nd International Conference on Types for Proofs and Programs
(TYPES 2016), volume 97 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 5:1-5:31, Dagstuhl, Germany, 2018. Schloss Dagstuhl —
Leibniz-Zentrum fir Informatik.

Edwin C. Brady. Idris, a general-purpose dependently typed programming
language: Design and implementation. J. Funct. Program., 23(5):552-593,
2013.

Edwin C. Brady. Idris 2: Quantitative type theory in practice. In Anders
Mgller and Manu Sridharan, editors, 35th European Conference on Object-
Oriented Programming, FCOOP 2021, July 11-17, 2021, Aarhus, Den-
mark (Virtual Conference), volume 194 of LIPIcs, pages 9:1-9:26. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021.

Mario Carneiro. Leandlean: Towards a verified typechecker for lean, in lean,
2024.

Tej Chajed. Record updates in coq. In CogPL 2021: The Seventh Inter-
national Workshop on Coq for Programming Languages, 2021. Extended
Abstract.

Arthur Charguéraud. The locally nameless representation. Journal of Au-
tomated Reasoning - JAR, 49:1-46, 10 2012.

Adam Chlipala. Parametric higher-order abstract syntax for mechanized
semantics. SIGPLAN Not., 43(9):143-156, September 2008.

Cyril Cohen, Enzo Crance, and Assia Mahboubi. Trocq: Proof transfer for
free, with or without univalence. CoRR, abs/2310.14022, 2023.

Cyril Cohen, Kazuhiko Sakaguchi, and Enrico Tassi. Hierarchy builder: Al-
gebraic hierarchies made easy in coq with elpi (system description). In
Zena M. Ariola, editor, 5th International Conference on Formal Struc-
tures for Computation and Deduction, FSCD 2020, June 29-July 6, 2020,
Paris, France (Virtual Conference), volume 167 of LIPIcs, pages 34:1-34:21.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2020.

Agda Community. agda-stdlib-classes.

Thierry Coquand and Gérard P Huet. The calculus of constructions. In-
formation and Computation, 76(2/3):95-120, 1988.

Enzo Crance. Meéta-programmation pour le transfert de preuve en théorie
des types dépendants. Theses, Nantes Université, December 2023.

Adrian Dapprich. Autosubst metacoq, 2021.

Adrian Dapprich. Generating infrastructural code for terms with binders
using metacoq, 2021. Bachelor’s thesis, Saarland University.

Arthur Azevedo de Amorim. Deriving instances with dependent types. In
Proceedings of the Sizth International Workshop on Coq for Programming
Languages (CoqPL 2020), 2020.

N.G de Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the church-rosser
theorem. Indagationes Mathematicae (Proceedings), 75(5):381-392, 1972.
Louise Dubois de Prisque. Prétraitement compositionnel en Coq. (Composi-
tional preprocessing in Coq). PhD thesis, University of Paris-Saclay, France,
2024.

23

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Paulo Emilio de Vilhena and Francois Pottier. A separation logic for effect
handlers. Proc. ACM Program. Lang., 5(POPL), January 2021.

Pablo Donato, Pierre-Yves Strub, and Benjamin Werner. A drag-and-drop
proof tactic. In Andrei Popescu and Steve Zdancewic, editors, CPP ’22:
11th ACM SIGPLAN International Conference on Certified Programs and
Proofs, Philadelphia, PA, USA, January 17 - 18, 2022, pages 197-209.
ACM, 2022.

Catherine Dubois, Nicolas Magaud, and Alain Giorgetti. Pragmatic iso-
morphism proofs between coq representations: Application to lambda-term
families. In Delia Kesner and Pierre-Marie Pédrot, editors, 28th Interna-
tional Conference on Types for Proofs and Programs, TYPES 2022, June
20-25, 2022, LS2N, University of Nantes, France, volume 269 of LIPIcs,
pages 11:1-11:19. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2022.
Cvetan Dunchev, Ferruccio Guidi, Claudio Sacerdoti Coen, and Enrico
Tassi. ELPI: fast, embeddable, Aprolog interpreter. In Martin Davis, Ans-
gar Fehnker, Annabelle Mclver, and Andrei Voronkov, editors, Logic for
Programming, Artificial Intelligence, and Reasoning - 20th International
Conference, LPAR-20 2015, Suva, Fiji, November 24-28, 2015, Proceed-
ings, volume 9450 of Lecture Notes in Computer Science, pages 460—468.
Springer, 2015.

Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad, and
Leonardo de Moura. A metaprogramming framework for formal verifica-
tion. Proc. ACM Program. Lang., 1(ICFP), August 2017.

Davide Fissore and Enrico Tassi. A new Type-Class solver for Coq in Elpi.
In The Coq Workshop 2023, Bialystok, Poland, July 2023.

Joao Paulo Pizani Flor, Wouter Swierstra, and Yorick Sijsling. Pi-ware:
Hardware description and verification in agda. In Tarmo Uustalu, editor,
21st International Conference on Types for Proofs and Programs, TYPES
2015, May 18-21, 2015, Tallinn, Estonia, volume 69 of LIPIcs, pages 9:1—
9:27. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2015.

Yannick Forster, Matthieu Sozeau, and Nicolas Tabareau. Verified extrac-
tion from coq to ocaml. Proc. ACM Program. Lang., 8(PLDI), June 2024.
Yannick Forster and Kathrin Stark. Coq & la carte: a practical approach
to modular syntax with binders. In Jasmin Blanchette and Catalin Hritcu,
editors, Proceedings of the 9th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2020, New Orleans, LA, USA, January
20-21, 2020, pages 186—-200. ACM, 2020.

Andrew Gacek. The abella interactive theorem prover (system description).
In Proceedings of the 4th International Joint Conference on Automated Rea-
soning (IJCAR), pages 154-161. Springer, 2008.

Benjamin Grégoire, Jean-Christophe Léchenet, and Enrico Tassi. Practi-
cal and sound equality tests, automatically — Deriving eqType instances
for Jasmin’s data types with Coq-Elpi. In CPP 2023: Proceedings of the
12th ACM SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2023: Proceedings of the 12th ACM SIGPLAN International

24

[39]

[40]

[41]
[42]

[43]

[44]

[45]

|46]

[47]

48]

[49]

[50]

Conference on Certified Programs and Proofs, pages 167-181, Boston MA
USA, France, January 2023. ACM.

Jason Gross, Théo Zimmermann, Miraya Poddar-Agrawal, and Adam Chli-
pala. Automatic test-case reduction in proof assistants: A case study in
coq. In June Andronick and Leonardo de Moura, editors, 13th International
Conference on Interactive Theorem Proving, ITP 2022, August 7-10, 2022,
Haifa, Israel, volume 237 of LIPIcs, pages 18:1-18:18. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2022.

Ferruccio Guidi, Claudio Sacerdoti Coen, and Enrico Tassi. Implementing
Type Theory in Higher Order Constraint Logic Programming. Mathematical
Structures in Computer Science, 29(8):1125-1150, March 2019.

Hugo Herbelin. reduction-effects.

Jason Z. S. Hu and Brigitte Pientka. A layered approach to intensional
analysis in type theory. ACM Trans. Program. Lang. Syst., 46(4):15:1-
15:43, 2024.

Jason Z. S. Hu and Brigitte Pientka. Layered modal type theory - where
meta-programming meets intensional analysis. In Stephanie Weirich, edi-
tor, Programming Languages and Systems - 33rd European Symposium on
Programming, ESOP 2024, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2024, Luzembourg City, Lux-
embourg, April 6-11, 2024, Proceedings, Part I, volume 14576 of Lecture
Notes in Computer Science, pages 52—-82. Springer, 2024.

Jason Z. S. Hu and Brigitte Pientka. A dependent type theory for
meta-programming with intensional analysis. Proc. ACM Program. Lang.,
9(POPL):416-445, 2025.

Jason Z. S. Hu, Brigitte Pientka, and Ulrich Schépp. A category theoretic
view of contextual types: From simple types to dependent types. ACM
Trans. Comput. Log., 23(4):25:1-25:36, 2022.

Junyoung Jang, Samuel Gélineau, Stefan Monnier, and Brigitte Pientka.
Moceebius: metaprogramming using contextual types: the stage where system
f can pattern match on itself. Proc. ACM Program. Lang., 6(POPL):1-27,
2022.

Théo Laurent, Meven Lennon-Bertrand, and Kenji Maillard. Definitional
functoriality for dependent (Sub)Types. In Lecture Notes in Computer Sci-
ence, pages 302-331. 2024.

Bohdan Liesnikov, Marcel Ullrich, and Yannick Forster. Generating induc-
tion principles and subterm relations for inductive types using metacoq.
CoRR, abs/2006.15135, 2020.

Jannis Limperg. A novice-friendly induction tactic for lean. In Proceedings
of the 10th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2021, page 199-211, New York, NY, USA, 2021. Associa-
tion for Computing Machinery.

Jannis Limperg and Asta Halkjeer From. Aesop: White-box best-first proof
search for lean. In Proceedings of the 12th ACM SIGPLAN International
Conference on Certified Programs and Proofs, CPP 2023, page 253-266,
New York, NY, USA, 2023. Association for Computing Machinery.

25

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]
[63]

Nicolas Magaud. Towards automatic transformations of coq proof scripts. In
Pedro Quaresma and Zoltan Kovacs, editors, Proceedings 14th International
Conference on Automated Deduction in Geometry, ADG 2023, Belgrade,
Serbia, 20-22th September 2023, volume 398 of EPTCS, pages 4-10, 2023.
Kenji Maillard, Danel Ahman, Robert Atkey, Guido Martinez, Catalin
Hritcu, Exequiel Rivas, and Eric Tanter. Dijkstra monads for all. Proc.
ACM Program. Lang., 3(ICFP), July 2019.

Kenji Maillard, Catélin Hritcu, Exequiel Rivas, and Antoine Van Muylder.
The next 700 relational program logics. Proc. ACM Program. Lang.,
4(POPL), December 2019.

Matteo Manighetti, Dale Miller, and Alberto Momigliano. Two Applications
of Logic Programming to Coq. In Ugo de’Liguoro, Stefano Berardi, and
Thorsten Altenkirch, editors, 26th International Conference on Types for
Proofs and Programs (TYPES 2020), volume 188 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 10:1-10:19, Dagstuhl, Germany,
2021. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.

The mathlib Community. The lean mathematical library. In Proceedings
of the 9th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2020, page 367-381, New York, NY, USA, 2020. Associa-
tion for Computing Machinery.

Conor McBride and James McKinna. Functional pearl: i am not a number—i
am a free variable. In Proceedings of the 2004 ACM SIGPLAN Workshop
on Haskell, Haskell 04, page 1-9, New York, NY, USA, 2004. Association
for Computing Machinery.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and
programming language. In Lecture Notes in Computer Science, pages 625—
635. 2021.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover
and programming language. In André Platzer and Geoff Sutcliffe, editors,
Automated Deduction — CADE 28, pages 625—635, Cham, 2021. Springer
International Publishing.

Gopalan Nadathur and Dale Miller. An overview of lambda prolog. Tech-
nical report, USA, 1988.

Wojciech Nawrocki, Edward W. Ayers, and Gabriel Ebner. An extensible
user interface for lean 4. In Adam Naumowicz and René Thiemann, editors,
14th International Conference on Interactive Theorem Proving, ITP 2023,
July 31 to August 4, 2023, Biatystok, Poland, volume 268 of LIPIcs, pages
24:1-24:20. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2023.
Pierre Nigron and Pierre-Evariste Dagand. Reaching for the Star: Tale
of a Monad in Coq. In Leibniz International Proceedings in Informatics
(LIPIcs), volume 193 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 29:1-29:19, Rome, Italy, June 2021. Schloss Dagstuhl.

Ulf Norell. agda-prelude: Programming library for agda.

Ulf Norell. Towards a practical programming language based on dependent
type theory, volume 32. Chalmers University of Technology, 2007.

26

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

Ulf Norell, Nils Anders Danielsson, Jesper Cockx, and Andreas Abel. Agda
wiki. http://wiki.portal.chalmers.se/agda/pmwiki .php.

Zoe Paraskevopoulou, Aaron Eline, and Leonidas Lampropoulos. Comput-
ing correctly with inductive relations. In Ranjit Jhala and Isil Dillig, editors,
PLDI ’22: 48rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, San Diego, CA, USA, June 18 - 17,
2022, pages 966-980. ACM, 2022.

Christine Paulin-Mohring. Inductive definitions in the system Coq rules
and properties. In International Conference on Typed Lambda Calculi and
Applications, pages 328-345. Springer, 1993.

Arthur Paulino, D Testa, E Ayers, H Boving, J Limperg, S Gadgil, and
S Bhat. Metaprogramming in lean 4. Online Book. https://github.
com/arthurpaulino /lean4-metaprogramming-book, 2024.

F. Pfenning and C. Elliott. Higher-order abstract syntax. SIGPLAN Not.,
23(7):199-208, June 1988.

Brigitte Pientka. A type-theoretic framework for certified meta-
programming (invited talk extended abstract). In Guillaume Allais and
Yanhong Annie Liu, editors, Proceedings of the 2025 ACM SIGPLAN In-
ternational Workshop on Partial Evaluation and Program Manipulation,
PEPM 2025, Denver, CO, USA, 21 January 2025, pages 10-11. ACM, 2025.
Brigitte Pientka and Joshua Dunfield. Beluga: A framework for program-
ming and reasoning with contextual data. In Proceedings of the 10th In-
ternational Symposium on Functional and Logic Programming (FLOPS),
pages 1-17. Springer, 2010.

Gordon D. Plotkin and Matija Pretnar. Handling algebraic effects. Log.
Methods Comput. Sci., 9, 2013.

Pierre-Marie Pédrot. Ltac2: Tactical warfare. In The 5th International
Workshop on Coq for Programming Languages (CogPL 2019), 2019. Talk
at CoqPL 2019, affiliated with POPL 2019.

Talia Ringer. Proof Repair. PhD thesis, University of Washington, USA,
2021.

Ayumu Saito and Reynald Affeldt. Towards a practical library for monadic
equational reasoning in coq. In Ekaterina Komendantskaya, editor, Math-
ematics of Program Construction, pages 151-177, Cham, 2022. Springer
International Publishing.

Kazuhiko Sakaguchi. Reflexive tactics for algebra, revisited. In June An-
dronick and Leonardo de Moura, editors, 13th International Conference on
Interactive Theorem Proving, ITP 2022, August 7-10, 2022, Haifa, Israel,
volume 237 of LIPIcs, pages 29:1-29:22. Schloss Dagstuhl - Leibniz-Zentrum
flir Informatik, 2022.

Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick
Forster, Fabian Kunze, Gregory Malecha, Nicolas Tabareau, and Théo Win-
terhalter. The MetaCoq Project. Journal of Automated Reasoning, Febru-
ary 2020.

Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and
Théo Winterhalter. Coq coq correct! verification of type checking and era-
sure for coq, in coq. Proc. ACM Program. Lang., 4(POPL), December 2019.

27

http://wiki.portal.chalmers.se/agda/pmwiki.php

(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[33]

Arnaud Spiwack. An abstract type for constructing tactics in Coq. In Proof
Search in Type Theory, Edinburgh, United Kingdom, July 2010.

Kathrin Stark, Steven Schéfer, and Jonas Kaiser. Autosubst 2: reasoning
with multi-sorted de bruijn terms and vector substitutions. In Assia Mah-
boubi and Magnus O. Myreen, editors, Proceedings of the 8th ACM SIG-
PLAN International Conference on Certified Programs and Proofs, CPP
2019, Cascais, Portugal, January 14-15, 2019, pages 166—-180. ACM, 2019.

Carst Tankink, Herman Geuvers, James McKinna, and Freek Wiedijk.
Proviola: A tool for proof re-animation. CoRR, abs/1005.2672, 2010.

Enrico Tassi. Deriving Proved Equality Tests in Cog-Elpi: Stronger In-
duction Principles for Containers in Coq. In John Harrison, John O’Leary,
and Andrew Tolmach, editors, 10th International Conference on Interactive
Theorem Proving (ITP 2019), volume 141 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 29:1-29:18, Dagstuhl, Germany, 2019.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.

The Coq Development Team. The coq proof assistant, September 2024.

Sebastian Ullrich and Leonardo de Moura. Beyond notations: Hygienic
macro expansion for theorem proving languages. In Automated Reason-
ing: 10th International Joint Conference, IJCAR 2020, Paris, France, July
1-4, 2020, Proceedings, Part II, page 167-182, Berlin, Heidelberg, 2020.
Springer-Verlag.

Sebastian Ullrich and Leonardo de Moura. ‘do’ unchained: embracing local
imperativity in a purely functional language (functional pearl). Proc. ACM
Program. Lang., 6(ICFP), August 2022.

Cas van der Rest and Wouter Swierstra. A completely unique account of
enumeration. Proc. ACM Program. Lang., 6(ICFP):411-437, 2022.

Paul van der Walt and Wouter Swierstra. Engineering proof by reflection
in agda. In International Symposium on Implementation and Application
of Functional Languages, 2012.

Marcell van Geest and Wouter Swierstra. Generic packet descriptions: ver-
ified parsing and pretty printing of low-level data. In Sam Lindley and
Brent A. Yorgey, editors, Proceedings of the 2nd ACM SIGPLAN Interna-
tional Workshop on Type-Driven Development, TyDe@ICFEFP 2017, Ozford,
UK, September 3, 2017, pages 30—40. ACM, 2017.

Max Vistrup, Michael Sammler, and Ralf Jung. Program logics a la carte.
Proc. ACM Program. Lang., 9(POPL), January 2025.

28

29

A Rocq Plugin - de Bruijn code

let build_fmap env sigma ind : Evd.evar_map * EConstr.t =
(¥ Construct the lambda abstractions. *)
lambda env sigma "a" ta @@ fun env ->
lambda env sigma "b" tb @@ fun env ->
lambda env sigma "f" (arr (mkRel 2) (mkRel 1)) ©Q fun env ->
lambda env sigma "x" (apply_ind env ind ©C mkRel 3) @€ fun env ->
let inp = { a=4; b=23; f=2; x=11%}in
(*# Construct the case return clause. *)
let sigma, case_return =
lambda env sigma "_" (apply_ind env ind ©C mkRel inp.a) @@ fun env ->
(sigma, apply_ind env ind 0@ mkRel (1 + inp.Db))
in
(*# Construct the case branches. *)
let rec loop sigma acc ctrs_a ctrs_b =
match (ctrs_a, ctrs_b) with
| [, [1 -> (sigma, Array.of_list @@ List.rev acc)

| ca :: ctrs_a, cb :: ctrs_b ->
let sigma, branch = build_branch env sigma inp ca cb in
loop sigma (branch :: acc) ctrs_a ctrs_b

| _ -> Log.error "build_fmap : different lengths"
in
let sigma, branches =
loop sigma [] (constructors env ind @@ mkRel inp.a) (constructors env ind ©@ mkRel inp.b)
in
(* Finally construct the case expression. *)
(sigma
, Inductiveops.simple_make_case_or_project env sigma
(Inductiveops.make_case_info env ind Constr.RegularStyle)
(case_return, ERelevance.relevant)
Constr.NoInvert (mkRel inp.x) branches)

let build_branch env sigma inp ca cb : Evd.evar_map * EConstr.t =
(* Arguments are processed from outermost to inmnermost. *)
let rec loop env sigma i acc decls =
match decls with
| [1 -> (sigma, acc)
| decl :: decls ->
let env = Environ.push_rel decl env in
let sigma, arg' =
(¥ Call build_arg at o depth which is consistent with the local context
of the environment, and lift the result to bring it at depth [n]. *)
build_arg env sigma
(lift_inputs (i + 1) inp)

(mkRel 1)
(Vars.lift 1 @0 EConstr.of_constr @0 get_type decl)
in
loop env sigma (i + 1) (1lift (ca.cs_nargs - i - 1) arg' :: acc) decls

in
let sigma, args' =
loop env sigma O [] (List.rev @@ EConstr.to_rel_context sigma ca.cs_args)
in
(* Apply the constructor to the arguments. *)
let body = mkApp (mkConstructU cb.cs_cstr,

Array.of_list (mkRel (ca.cs_nargs + inp.b) :: List.rev args'))
in
(* Bind the constructor arguments. *)
let branch =

it_mkLambda body ©@ List.map
(function LocalAssum (b, ty) | LocalDef (b, _, ty) -> (b, ty))
ca.cs_args
in
(sigma, branch)

Fig. 1: OCaml code for buila_fmap and build_branch.

Most functions in OCaml plugins take _as input the (global and local) environ-
ment env and the evar-map sigma, and re@urn the updated evar-map. For instance
lambda env sigma "x" T k builds a lambda abstraction with a binder named x and of type
T; the continuation k takes in the new environment (updated with a binding for x) and
returns the body of the lambda abstraction alongside the new updated evar-map. In
the code above, the continuation is a lambda abstraction fun env -> ..., and the double
at symbol ece stands for right-associative function application.

B Rocq Plugin - locally nameless code

let build_fmap env sigma ind : Evd.evar_map * EConstr.t =
(* Abstract over the input variables. *)
namlLambda env sigma "a" ta @C fun env sigma a ->
namlLambda env sigma "b" tb @@ fun env sigma b ->
namLambda env sigma "f" (mkArrowR (mkVar a) (mkVar b)) @C fun env sigma f ->
namLambda env sigma "x" (apply_ind env ind @@ mkVar a) @@ fun env sigma x ->
(¥ Construct the case return clause. *)
let sigma, case_return =
namLambda env sigma "_" (apply_ind env ind @@ mkVar a) @@ fun env sigma _ ->
(sigma, apply_ind env ind @@ mkVar b)
in
(¥ Construct the case branches. *)
let rec loop sigma acc ctrs_a ctrs_b =
match (ctrs_a, ctrs_b) with
| [1, [1 -> (sigma, Array.of_list @0 List.rev acc)
| ca :: ctrs_a, cb :: ctrs_b ->
let sigma, branch =
build_branch env sigma { fmap; a; b; f; _x = x } ca cb
in loop sigma (branch :: acc) ctrs_a ctrs_b
| _ -> Log.error "build_map : different lengths"
in
let sigma, branches =
loop sigma [] (constructors env @@ mkVar a)
(constructors env @@ mkVar b)
in
(* Finally construct the case expression. *)
(sigma
, Inductiveops.simple_make_case_or_project env sigma
(Inductiveops.make_case_info env ind Constr.RegularStyle)
(case_return, ERelevance.relevant)
Constr.NoInvert (mkVar x) branches)

let build_branch env sigma inp ca cb : Evd.evar_map * EConstr.t =
(* Bind the arguments of the constructor. *)
namLambdaContext env sigma ca.cs_args €@ fun env sigma args ->
(¥ Map the correct function over each argument. *)
let arg_tys = List.map Declaration.get_type ca.cs_args in
let rec loop sigma acc args arg_tys =
match (args, arg_tys) with
| [1, [1 -> (sigma, acc)
| arg :: args, ty :: arg_tys ->
let sigma, arg' = build_arg env sigma inp arg ty in
loop sigma (arg' :: acc) args arg_tys
| _ -> Log.error "build_branch : length mismatch"
in
let sigma, args' = loop sigma [] (List.map mkVar args) arg_tys in
(¥ Apply the constructor to the arguments. *)
(sigma, mkApp (mkConstructU cb.cs_cstr, Array.of_list (mkVar inp.b :: args')))

Fig.2: OCaml code for build_fmap and build_branch, locally nameless version.

31

C MetaRocq code

Definition build_fmap ctx ind ind_body : term :=
(¥ Abstract over the input parameters. *)
mk_lambda ctx "A" (tSort @@ sType fresh_universe) @@ fun ctx =>
mk_lambda ctx "B" (tSort @@ sType fresh_universe) @@ fun ctx =>
mk_lambda ctx "f" (mk_arrow (tRel 1) (tRel 0)) 0@ fun ctx =>
mk_lambda ctx "x" (tApp (tInd ind []) [tRel 2]) 0@ fun ctx =>
let inp := {| fmap := 4 ; A :=3 ; B :=2 ; f :=1; x :=0 |} in
(* Construct the case information. *)

let ci := {| ci_ind := ind ; ci_npar := 1 ; ci_relevance := Relevant |} in
(* Construct the case predicate. *)
let pred :=
{| puinst := []
; pparams := [tRel inp.(A)]
; pcontext := [{| binder_name := nNamed "x" ; binder_relevance := Relevant |}]
; preturn := tApp (tInd ind []) [tRel (inp.(B) + 1)] [}
in
(¥ Construct the branches. *)
let branches := mapi (build_branch ctx ind inp) ind_body. (ind_ctors) in

tCase ci pred (tRel inp.(x)) branches.

Definition build_branch ctx ind inp ctor_idx ctor : branch term :=
(* Get the context of the constructor. *)
let bcontext := List.map decl_name ctor.(cstr_args) in
let n := List.length bcontext in
(* Get the types of the arguments of the constructor at type [A]. *)
let arg_tys := cstr_args_at ctor (tInd ind []) [tRel inp.(A)] in
(* Process the arguments one by one, starting from the outermost one. *)
let loop := fix loop ctx i acc decls :=
match decls with
| [1 => List.rev acc
| d :: decls =>
let ctx :=d :: ctx in
(* We call build_arg at a depth which is consistent with the local contez,
and we lift the result to bring it at depth [n]. *)
let mapped_arg := build_arg ctx (lift_inputs (i + 1) inp) (tRel 0) (1ift0 1 d.(decl_type)) in
loop ctx (i + 1) (1ift0 (n - i - 1) mapped_arg :: acc) decls

end
in
(* The mapped arguments are at depth [n]. *)
let mapped_args := loop ctx 0 [] (List.rev arg_tys) in

(* Apply the constuctor to the mapped arguments. *)

let bbody := tApp (tConstruct ind ctor_idx []) @@ tRel (inp.(B) + n) :: mapped_args in
(* Assemble the branch's contezt and body. *)

mk_branch bcontext bbody.

Fig. 3: MetaRocq code for build_fmap and build_branch

The data-structures and low-level APIs exposed by MetaRocq are very similar to those
used in OCaml: the MetaRocq plugin is thus very similar to the OCaml plugin using
de Bruijn indices (Figure. The function mk_1ambda corresponds to the OCaml function
lambda, and the representation of terms is almost identical. The code manages only a
local (de Bruijn) context ctx: MetaRocq does not have a notion of an evar-map.

32

D Agda code

build-fmap : Name -> Name -> TC (List Clause)
build-fmap ind func = do
ind-def <- getDefinition ind
ctors <-
case ind-def of \
{ (data-type npars ctors) -> return ctors
5 _ -> typeError ... }
mapM (build-clause ind func) ctors

build-clause : Name -> Name -> Name -> TC Clause
build-clause ind func ctor = do
-- Bind the input arguments.
let inp = record { ind = ind ; func = func ; a=4 ; A=3;b=2;B=1;f=013
inp-tele =
("a" , hArg (quoteTerm Level))
("A" , hArg (agda-sort @@ Sort.set @@ var 0 []))
("b" , hArg (quoteTerm Level))
("B" , hArg (agda-sort @@ Sort.set @@ var O [])) ::
("f" , vArg (pi (vArg @@ var 2 []) @@ abs "_" @@ var 1 [1)) :: []
inContext (List.reverse inp-tele) @@ do
-- Fetch the type of the constructor at parameter [A].
ctor-ty <- inferType (con ctor (hArg (var (Inputs.a inp) []) :: hArg (var (Inputs.A inp) [1)
-- Get the types of the arguments of the constructor.
let (args-tele , _) = pi-telescope ctor-ty
n-args = List.length args-tele
inContext (List.reverse @@ inp-tele ++ args-tele) @@ do
let inp = lift-inputs n-args inp
-- Transform each argument as needed.
mapped-args <-
mapM (\(i , (_ , ty)) -> build-arg inp i @@ Arg.map (weaken (i + 1)) ty)
(List.zip (downFrom n-args) args-tele)
-- Build the clause.
let args-patt =
List.zipWith
(\{ (_ , arg info _) i -> arg info (Pattern.var i) })
args-tele (downFrom n-args)
patt =
hArg (Pattern.var Q@ Inputs.a inp)
hArg (Pattern.var Q@ Inputs.A inp)
hArg (Pattern.var @@ Inputs.b inp)
hArg (Pattern.var @@ Inputs.B inp)
vArg (Pattern.var @@ Inputs.f inp) ::
vArg (Pattern.con ctor args-patt) :: []

1

body = con ctor (hArg (var (Inputs.b inp) []) :: hArg (var (Inputs.B inp) []) :: mapped-args)

Clause.clause (inp-tele ++ args-tele) patt body

Fig.4: Agda code for build-fmap and build-clause.

Agda does not have a notion of local fixpoint: instead, constants such as fmap are
defined via a collection of (possible recursive) equations, represented as a collection of
clauses. Agda’s meta-programming API supports nested pattern matching: clauses are
built using Clause.clause vars patt body, Where vars is the list of variables bound by the
clause, patt is the left-hand side of the clause (or pattern) which may contain nested
constructors, and body is the right-hand side of the clause.

33

E Lean code

def buildFmap ind : MetaM Expr := do
-- Declare the input parameters.

withLocalDecl “A .implicit (.sort ...) fun A => do
withLocalDecl "B .implicit (.sort ...) fun B => do
withLocalDecl “f .default (+ mkArrow A B) fun £ => do
withLocalDecl "x .default (+ apply_ind ind A) fun x => do

-- Construct the case return type.
let ret_type := Expr.lam ~_ (+ apply_ind ind A) (« apply_ind ind B) .default
-- Construct the case branches.
let branches + ind.ctors.toArray.mapM fun ctr => do

let info « getConstInfoCtor ctr

buildBranch A B f info
-- Construct the case ezpression.
let cases_func + freshConstant (+ getConstInfo @@ .str ind.name "casesOn")
let body := mkAppN cases_func 0@ Array.append #[A, ret_type, x] branches
-- Bind the input parameters.
mkLambdaFVars #[A, B, f, x] body

def buildBranch A B f ctor : MetaM Expr := do
-- Get the arguments of the constructor applied to 4.
let ctr_ty + instantiateTypeLevelParams (ConstantInfo.ctorInfo ctor) [...]
forallTelescope (+ instantiateForall ctr_ty #[A]) fun args _ => do
-- Map over each argument of the constructor.
let mapped_args « args.mapM (buildArg A B f)
-- Apply the constructor to the new arguments.
let freshCtor « freshConstant @C .ctorInfo ctor
let body := mkAppN freshCtor @@ Array.append #[B] mapped_args
-- Abstract with respect to the arguments.
instantiateMVars =<< mkLambdaFVars args body

Fig.5: Lean code for buildFmap and buildBranch.

Notice the return type MetaM Expr of build_fmap and the use of do notation: the code above
runs in the MetaM monad, which provides implicit access to the global environment, local
context, and metavariable context. In Lean, binders are represented using the locally
nameless style: bound variables use de Bruijn indices, and free variables are named.
The function withLocalDecl extends the local context with a new named variable, and
mkLambdaFVars replaces free (named) variables with bound (de Bruijn) variables in a
term. Back-ticks, as in "4, provide syntax sugar to construct names of global constants
or local variables. Because Lean is a pure language, assigning a metavariable does not
update the terms in which it occurs, thus one has to remember to use instantiateMvars
to expand defined metavariables in terms. For simplicity we assume that all arguments
of option and its constructors are explicit, and do not show how to handle universe
polymorphism (we use ellipses in the code above).

34

F Ltac2 code

(* Ezpects a goal of the form [forall A B, (4 -> B) -> F 4 -> F B]. %)
Ltac2 build_fmap F : unit :=

(* intro *)

intro @A ; intro @B ; intro @f ; intro @x ;

(* destruct *)

Std.case false (Control.hyp Ox, NoBindings) ;

(* Build each branch. *)

let n_ctors := ... in

Control.dispatch (List.init n_ctors (build_branch F ©A @B 0f)).

(* Ezpects a goal of the form [forall arg_1 ... arg_n, F B]. *)
Ltac2 build_branch F a b £ i () : unit :=

(¥ Introduce the arguments with fresh names. *)

let n_args := ... in

let args := n_intro n_args in

(* Apply constructor [i]. *)

constructor_n false i NoBindings ;

(¥ Process each argument separately. *)

Control.dispatch (List.map (build_arg a b f) args).

Fig. 6: Ltac2 code for build_fmap and build_branch.

The at symbol, as in @x, is used to construct Ltac2 identifiers. Chaining tactics is done
using Control.dispatch [t_1 ; ... ; t_n], which applies tactic t_i to the i-th open goal.
Many functions take explicit flags, e.g. Std.case false (Control.hyp @x, NoBindings) Simply
performs case analysis on the local variable x, and constructor_n false i NoBindings applies
the i-th constructor when the goal is of inductive type.

A quirk of the Ltac2 API is that introducing variables with fresh identifiers is slightly
awkward; n_intro is a custom introduction tactic which handles fresh name generation.

35

G Elpi code

pred build-fmap i:inductive, o:term.
build-fmap I {{ fun (A B : Type) (f : A -> B) (x : 1p:(FI A)) => 1p:(M A B f x) }}
% Declare FI
(pi x| coq.mk-app { coq.env.global (indt I) } [x] (FI x)),
% Bind the parameters.
Cpi-decl "A" {{ Type }} a
Opi-decl "B” {{ Type }} bE
Opi-decl “f° {{ lp:a -> 1lp:b }} fN
@pi-decl "x° (FI a) x\
% Build the inner match.
coq.build-match x (FI a) (N.N.\eN r = FI b)
(build-branch I a b f) (Mab f x).

pred build-branch i:inductive, i:term, i:term, i:term, i:term,
i:term, i:list term, i:list term, o:term.
build-branch I A B F CA _ Args ArgsTy Branch :-
% Process each argument.
std.map2 Args ArgsTy (build-arg I A B F) MappedArgs,
% Change A with B in the constructor.
(copy A B => copy CA CB),
7 Apply the constructor to the new arguments.
coq.mk-app CB MappedArgs Branch.

Fig. 7: Elpi code for build-fmap and build-branch.

Elpi code makes heavy use of term quotations: {{ ... }} quotes Rocq code into Elpi,
and 1p: (...) quotes Elpi code into Rocq. Back-ticks, as in "x, provide syntactic sugar
to build identifiers for local variables. These variables are tracked in a local context:
epi-decl "x° T k adds a variable with name “x and type T to the local context, and runs
continuation x in this extended context. In the code above, continuations are in fact
simply lambda abstractions Ax.t, written =\ t in Elpi.

36

	Code Generation via Meta-programming in Dependently Typed Proof Assistants

